Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100502    DOI: 10.1088/0256-307X/33/10/100502
GENERAL |
Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates
Yu-E Li, Ju-Kui Xue**
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
Yu-E Li, Ju-Kui Xue 2016 Chin. Phys. Lett. 33 100502
Download: PDF(518KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the moving matter-wave solitons in spin–orbit coupled Bose–Einstein condensates (BECs) by a perturbation method. Starting with the one-dimensional Gross–Pitaevskii equations, we derive a new KdV-like equation to which an approximate solution is obtained by assuming weak Raman coupling and strong spin–orbit coupling. The derivation of the KdV-like equation may be useful to understand the properties of solitons excitation in spin–orbit coupled BECs. We find different types of moving solitons: dark–bright, bright–bright and dark–dark solitons. Interestingly, moving dark–dark soliton for attractive intra- and inter-species interactions is found, which depends on the Raman coupling. The amplitude and velocity of the moving solitons strongly depend on the Raman coupling and spin–orbit coupling.
Received: 24 July 2016      Published: 27 October 2016
PACS:  05.45.Yv (Solitons)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11274255, 11305132 and 11475027, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20136203110001, and the Creation of Science and Technology of Northwest Normal University of China under Grant Nos NWNU-KJCXGC-03-48, NWNU-LKQN-12-12 and NWNU-LKQN-10-27.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-E Li
Ju-Kui Xue
[1]Abo-Shaeer J R et al 2002 Phys. Rev. Lett. 88 070409
[2]Billy J et al 2008 Nature 453 891
[3]Roati G et al 2008 Nature 453 895
[4]Huang G X et al 2003 Phys. Rev. A 67 023604
[5]Burger S et al 1999 Phys. Rev. Lett. 83 5198
[6]Theocharis G et al 2003 Phys. Rev. Lett. 90 120403
[7]Wu B et al 2002 Phys. Rev. Lett. 88 034101
[8]Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[9]Xue J K 2005 J. Phys. B 38 671
[10]Busch T and Anglin J R 2001 Phys. Rev. Lett. 87 010401
[11]Kevrekidis P G et al 2005 Phys. Rev. E 72 066604
[12]Becker C et al 2008 Nat. Phys. 4 496
[13]Hamner C et al 2011 Phys. Rev. Lett. 106 065302
[14]? hberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
[15]Li Q Y et al 2014 Chin. Phys. B 23 060310
[16]Pé rez-García V M and Beitia J B 2005 Phys. Rev. A 72 033620
[17]Adhikari S K 2005 Phys. Lett. A 346 179
[18]Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
[19]Kasamatsu K and Tsubota M 2004 Phys. Rev. Lett. 93 100402
[20]Kevrekidis P G et al 2004 Eur. Phys. J. D 28 181
[21]Lin Y J et al 2011 Nature 471 83
[22]Wang C et al 2010 Phys. Rev. Lett. 105 160403
[23]Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[24]Zhang C et al 2013 Chin. Phys. B 22 110308
[25]Li Y et al 2012 Phys. Rev. Lett. 108 225301
[26]Liao R Y et al 2013 Phys. Rev. A 87 043605
[27]Chen G P 2015 Acta Phys. Sin. 64 030302 (in Chinese)
[28]Wen L et al 2012 Phys. Rev. A 86 043602
[29]Zhang J Y et al 2012 Phys. Rev. Lett. 109 115301
[30]Ji S C, Zhang L, Xu X T, Wu Z, Deng Y j, Chen S and Pan J W 2015 Phys. Rev. Lett. 114 105301
[31]Hu F Q, Wang J J, Yu Z F, Zhang A X and Xue J K 2016 Phys. Rev. E 93 022214
[32]Wang W Y, Liu J and Fu L B 2015 Phys. Rev. A 92 053608
[33]Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
[34]Liu Y K and Yang S J 2014 Europhys. Lett. 108 30004
[35]Fialko O, Brand J and Zü licke U 2012 Phys. Rev. A 85 051605(R)
[36]Merkl M, Jacob A, Zimmer F E, ? hberg P and Santos L 2010 Phys. Rev. Lett. 104 073603
[37]Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[38]Salasnich L and Malomed Boris A 2013 Phys. Rev. A 87 063625
[39]Xu Y, Zhang Y P and Wu B 2013 Phys. Rev. A 87 013614
[40]Salasnich L, Cardoso Wesley B and Malomed Boris A 2014 Phys. Rev. A 90 033629
[41]Zhang Y C, Zhou Z W, Malomed Boris A and Pu H 2015 Phys. Rev. Lett. 115 253902
[42]Liu Y K and Yang S J 2014 Chin. Phys. B 23 110308
[43]Achilleos V, Frantzeskakis D J, Kevrekidis P G, Schmelcher P and Stockhofe J 2015 Rom. Rep. Phys. 67 235
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 100502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 100502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 100502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 100502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 100502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100502
Viewed
Full text


Abstract