CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques |
Md. Ghulam Saber**, Rakibul Hasan Sagor, Md. Ruhul Amin |
Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur 1704, Bangladesh
|
|
Cite this article: |
Md. Ghulam Saber, Rakibul Hasan Sagor, Md. Ruhul Amin 2016 Chin. Phys. Lett. 33 018401 |
|
|
Abstract The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved.
|
|
Received: 30 July 2015
Published: 29 January 2016
|
|
PACS: |
84.40.Fe
|
(Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))
|
|
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
84.40.Az
|
(Waveguides, transmission lines, striplines)
|
|
84.47.+w
|
(Vacuum tubes)
|
|
|
|
|
[1] Benford J, Swegle J A and Schamiloglu E 2007 High Power Microwaves (Florida: CRC Press) p 43 [2] Blyakhman A, Clunie D, Harris R, Mesyats G, Petelin M, Postoenko G and Wardrop B 2007 IEEE Radar Conference (Boston, Massachusetts USA 17–20 April 2007) p 61 [3] Tantawi S G, Nantista C D, Dolgashev V A, Pearson C, Nelson J, Jobe K, Chan J, Fant K, Frisch J and Atkinson D 2005 Phys. Rev. Spec. Top. Accel. Beams 8 042002 [4] Prater R 2004 Phys. Plasmas 11 2349 [5] Swegle J A, Poukey J W and Leifeste G T 1985 Phys. Fluids 28 2882 [6] Minami K, Saito M, Choyal Y, Maheshwari K and Granatstein V L 2002 IEEE Trans. Plasma Sci. 30 1134 [7] Kehs R A, Bromborsky A, Ruth B, Graybill S, Destler W, Carmel Y and Wang M 1985 IEEE Trans. Plasma Sci. 13 559 [8] Kantrowitz F D and Adler E A 1990 IEEE Trans. Electron Devices 37 2619 [9] Barroso J J, Neto J L and Kostov K G 2003 IEEE Trans. Plasma Sci. 31 752 [10] Watanabe T, Choyal Y, Minami K and Granatstein V 2004 Phys. Rev. E 69 056606 [11] Amin M R 2013 IET Microwaves Antennas Propag. 7 105 [12] Amin M R and Ogura K 2013 IEEE Trans. Plasma Sci. 41 2257 [13] Amin M R, Ogura K, Kojima J and Sagor R H 2014 IEEE Trans. Plasma Sci. 42 1495 [14] Amin M R and Ogura K 2007 IET Microwaves Antennas Propag. 1 575 [15] Amin R, Saber G and Sagor R H 2015 Proc.-Soc. Behav. Sci. 195 2548 [16] Saber M G, Sagor R H and Amin M R 2015 Eur. Phys. J. D 69 38 [17] Sagor R H, Saber M G and Amin M R 2015 Eur. Phys. J. Appl. Phys. 71 30801 [18] Saber M G, Sagor R H and Amin M R 2015 Eur. Phys. J. Appl. Phys. 70 20801 [19] Hummelt J S, Lewis S M, Shapiro M A and Temkin R J 2014 IEEE Trans. Plasma Sci. 42 930 [20] Tang Y, Meng L, Li H, Zheng L, Wang B and Yin Y 2012 IEEE Trans. Plasma Sci. 40 3552 [21] Guo H, Carmel Y, Lou W, Chen L, Rodgers J, Abe D, Bromborsky A, Destler W and Granatstein V 1992 IEEE Trans. Microwave Theory Tech. 40 2086 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|