Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 018101    DOI: 10.1088/0256-307X/33/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Determination of Traps' Density of State in OLEDs from Current–Voltage Analysis
M. S. Zaini, M. A. Mohd Sarjidan, W. H. Abd. Majid**
Low Dimensional Materials Research Centre, Physics Department, University of Malaya, Kuala Lumpur 50603, Malaya
Cite this article:   
M. S. Zaini, M. A. Mohd Sarjidan, W. H. Abd. Majid 2016 Chin. Phys. Lett. 33 018101
Download: PDF(730KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple method to determine the traps' density of state (DOS) in organic light-emitting diodes (OLEDs) by manipulating the current–voltage ($I$–$V$) characteristic of the devices at room temperature is introduced. In particular, the trap-dependent space-charge limited current formula is simplified to obtain effective density of traps. In this study, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT) and 2-Methoxy-5-(3$'$,7$'$-dimethyloctyloxy) benzene-1,4-diacetonitrile (OC$_{1}$C$_{10}$-PPV) are selected as the OLEDs emissive layer. The trap DOS of F8BT- and OC$_{1}$C$_{10}$-PPV-based OLEDs are calculated in the magnitudes of 10$^{24}$ m$^{-3}$ and 10$^{23}$ m$^{-3}$, respectively. In addition, the results agree with the other conventional method which is used to determine the trap DOS in OLEDs. This calculation technique may serve as a robust and reliable approach to obtain the trap DOS in OLEDs at room temperature.

Received: 03 July 2015      Published: 29 January 2016
PACS:  81.05.Fb (Organic semiconductors)  
  71.55.-i (Impurity and defect levels)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/018101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. S. Zaini
M. A. Mohd Sarjidan
W. H. Abd. Majid

[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
[2] Montero Martín J M 2010 PhD Dissertation (Castellón de la Plana: Jaume I University)
[3] Okachi T et al 2009 Appl. Phys. Lett. 94 043301
[4] Probst K H and Karl N 1975 Phys. Status Solidi (a) 27 499
[5] Pope M and Swenberg C E 1999 Electronic Processes in Organic Crystals and Polymers (Oxford: Oxford University Press) chap 4 p 233
[6] Jurchescu O D et al 2007 Adv. Mater. (Weinheim Ger.) 19 688
[7] Krellner C et al 2007 Phys. Rev. B 75 245115
[8] Haas S et al 2007 Phys. Rev. B 76 115203
[9] Pernstich K P et al 2008 Nat. Mater. 7 321
[10] Tsai M J and Meng H F 2005 J. Appl. Phys. 97 114502
[11] Kumar V et al 2003 J. Appl. Phys. 94 1283
[12] Lang D V et al 2004 Phys. Rev. Lett. 93 086802
[13] Horowitz G et al 1995 J. Phys. III (France) 5 355
[14] Müllen K and Scherf U 2006 Organic Light Emitting Devices: Synthesis, Properties and Applications (Weinheim: John Wiley & Sons) chap 5 p 188
[15] Lawrence J et al 2002 Appl. Phys. Lett. 81 1955
[16] Meyer J et al 2007 Appl. Phys. Lett. 91 113506
[17] Nguyen T et al 2008 Phys. Rev. B 77 235209
[18] Lampert M A and Mark P 1970 Current Injection in Solids (New York: Academic Press) chap 3 p 33
[19] Rose A 1955 Phys. Rev. 97 1538
[20] Lampert M et al 1959 J. Phys. Chem. Solids 8 464
[21] Sworakowski J 1970 J. Appl. Phys. 41 292
[22] Mandoc M M et al 2007 Phys. Rev. B 75 193202
[23] Kabra D et al 2010 Adv. Mater. 22 3194
[24] Faria G C 2011 PhD Dissertation (São Paulo: University of São Paulo)
[25] Nicolai H T et al 2012 Nat. Mater. 11 882
[26] Burrows P and Forrest S 1994 Appl. Phys. Lett. 64 2285
[27] Chua L L et al 2005 Nature 434 194
[28] Park J S et al 2011 Appl. Phys. Lett. 99 163305

Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 018101
[2] WANG Yong-Fan, QU Feng-Dong, ZHOU Jing-Ran, GUO Wen-Bin, DONG Wei, LIU Cai-Xia, RUAN Sheng-Ping. High Responsivity Organic Ultraviolet Photodetector Based on NPB Donor and C60 Acceptor[J]. Chin. Phys. Lett., 2015, 32(08): 018101
[3] Bushra Mohamed Omer. Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study[J]. Chin. Phys. Lett., 2015, 32(08): 018101
[4] ZHAO Yu-Feng, LI Xin-Hua, SHI Tong-Fei, WANG Wen-Bo, ZHOU Bu-Kang, DUAN Hua-Hua, ZENG Xue-Song, LI Ning, WANG Yu-Qi. Synthesis and Photoluminescence Properties of GaAs Nanowires Grown on Fused Quartz Substrates[J]. Chin. Phys. Lett., 2014, 31(05): 018101
[5] ZHENG Rui, HUANG Wen-Bo, XU Wei, CAO Yong. Analysis of Intrinsic Degradation Mechanism in Organic Light-Emitting Diodes by Impedance Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(2): 018101
[6] YANG De-Zhi, SUN Heng-Da, CHEN Jiang-Shan, MA Dong-Ge. High Current Transfer Ratio Organic Optocoupler Based on Tandem Organic Light-Emitting Diode as the Input Unit[J]. Chin. Phys. Lett., 2012, 29(11): 018101
[7] CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao. A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition[J]. Chin. Phys. Lett., 2012, 29(7): 018101
[8] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 018101
[9] Jaya Lohani, Manoj Gaur, Upendra Kumar, V. R. Balakrishnan, Harsh, S. V. Eswaran. Electrical Studies on Pentacene Thin Film Transistors with Different Channel Widths[J]. Chin. Phys. Lett., 2010, 27(4): 018101
Viewed
Full text


Abstract