Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 013102    DOI: 10.1088/0256-307X/33/1/013102
ATOMIC AND MOLECULAR PHYSICS |
Orientation Dependence of Photoelectron Angular Distribution in Nitrogen Molecule Irradiated by XUV Laser Field
Xiao-Dong Yang1**, Ming Gao2, Yuan Tian1
1Department of Optical and Electrical Information, Xi'an University of Technological Information, Xi'an 710200
2College of Optoelectronic engineering, Xi'an Technological University, Xi'an 710021
Cite this article:   
Xiao-Dong Yang, Ming Gao, Yuan Tian 2016 Chin. Phys. Lett. 33 013102
Download: PDF(612KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We theoretically study the dependence of photoelectron angular distribution on laser polarization direction in nitrogen molecules. The approach is based on the time-dependent density functional theory at the level of local density approximation complemented by self-interaction correction. It is found that photoelectron emission in one photon regime could be considered as a probing tool for the main character of different types of molecular orbitals ($\sigma$ or $\pi$). The pattern of emitted photoelectrons strongly depends on the polarized angle of the laser, for $\sigma$ orbital, the number of photoelectron decreases with increasing the polarized angle, while for $\pi$ orbital, it has the inverse relation to the polarized angle, which reveals the multi-electron effect in molecules. On the other hand, concerning the total photoelectron emission, one should take into account a few occupied orbitals instead of only the outmost one.

Received: 23 June 2015      Published: 29 January 2016
PACS:  31.15.ee (Time-dependent density functional theory)  
  33.80.-b (Photon interactions with molecules)  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/013102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/013102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Dong Yang
Ming Gao
Yuan Tian

[1] Hirschfelder J O et al 2009 Advances in Chemical Physics, Lasers, Molecules, and Methods (New York: John Wiley & Sons) vol 73
[2] Pavi?i? D et al 2007 Phys. Rev. Lett. 98 243001
[3] Thomann I et al 2008 J. Phys. Chem. A 112 9382
[4] Telnov D A and Chu S I 2009 Phys. Rev. A 79 041401
[5] Zhao S F et al 2009 Phys. Rev. A 80 051402
[6] Tong X M et al 2002 Phys. Rev. A 66 033402
[7] Petretti S et al 2010 Phys. Rev. Lett. 104 223001
[8] Gazibegovi?-Busulad?i? A et al 2011 Phys. Rev. A 84 043426
[9] De Giovannini U et al 2012 Phys. Rev. A 85 062515
[10] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[11] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[12] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[13] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[14] Rudd M E et al 1992 Rev. Mod. Phys. 64 441
[15] Goedecker S et al 1996 Phys. Rev. B 54 1703
[16] Feit M D et al 1982 J. Comput. Phys. 47 412
[17] Calvayrac F et al 2000 Phys. Rep. 337 493
[18] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) vol 4
[19] Lofthus A and Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113
[20] Wang Z P et al 2012 Chin. Phys. Lett. 29 073101
[21] Gao C Z et al 2013 Chem. Phys. 410 9
[22] Gao C Z et al 2014 J. Chem. Phys. 140 054308
[23] Cooper J and Zare R N 1969 Lectures in Theoretical Physics: Atom Collision Processes (New York: Gordon Breach) vol 1-C p 317
[24] Wopperer P et al 2010 Phys. Rev. A 82 063416
[25] Wopperer P et al 2015 Phys. Rep. 562 1
[26] Gao C Z et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 105102
[27] Johansson J O and Campbell E E 2013 Chem. Soc. Rev. 42 5661
[28] Barillot T et al 2015 Phys. Rev. A 91 033413

Related articles from Frontiers Journals
[1] Shuai Qin, Cong-Zhang Gao, Wandong Yu, and Yi-Zhi Qu. Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory[J]. Chin. Phys. Lett., 2021, 38(6): 013102
Viewed
Full text


Abstract