Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 098502    DOI: 10.1088/0256-307X/32/9/098502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance
HU Sheng-Dong1,2**, JIN Jing-Jing1, CHEN Yin-Hui1, JIANG Yu-Yu1, CHENG Kun1, ZHOU Jian-Lin1, LIU Jiang-Tao1, HUANG Rui1, YAO Sheng-Jie1
1College of Communication Engineering, Chongqing University, Chongqing 400044
2National Laboratory of Analogue Integrated Circuits, No. 24 Research Institute of China Electronics Technology Group Corporation, Chongqing 400060
Cite this article:   
HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui et al  2015 Chin. Phys. Lett. 32 098502
Download: PDF(886KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel silicon-on-insulator (SOI) power metal-oxide-semiconductor field effect transistor with an interface-gate (IG SOI) structure is proposed, in which the trench polysilicon gate extends into the buried oxide layer (BOX) at the source side and an IG is formed. Firstly, the IG offers an extra accumulation channel for the carriers. Secondly, the subsidiary depletion effect of the IG results in a higher impurity doping for the drift region. A low specific on-resistance is therefore obtained under the condition of a slightly enhanced breakdown voltage for the IG SOI. The influences of structure parameters on the device performances are investigated. Compared with the conventional trench gate SOI and lateral planar gate SOI, the specific on-resistances of the IG SOI are reduced by 36.66% and 25.32% with the breakdown voltages enhanced by 2.28% and 10.83% at the same SOI layer of 3 μm, BOX of 1 μm, and half-cell pitch of 5.5 μm, respectively.
Received: 27 March 2015      Published: 02 October 2015
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.-z (Semiconductor devices)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/098502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/098502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Sheng-Dong
JIN Jing-Jing
CHEN Yin-Hui
JIANG Yu-Yu
CHENG Kun
ZHOU Jian-Lin
LIU Jiang-Tao
HUANG Rui
YAO Sheng-Jie
[1] Fan J et al 2013 Chin. Phys. Lett. 30 078501
[2] Luo Y C et al 2014 Chin. Phys. B 23 077306
[3] Fan J et al 2013 Chin. Phys. B 22 118502
[4] Huang Y S and Baliga B J 1991 Proc. ISPSD 27
[5] Chung S K 2000 IEEE Trans. Electron Devices 47 1006
[6] Zingg R P et al 2000 IEEE Int. SOI Conf. 62
[7] Hu X R et al 2012 Solid-State Electron. 69 89
[8] Zhang J et al 2015 Chin. Phys. B 24 037203 028502
[9] Xu S et al 2000 IEEE Trans. Electron Devices 47 1980
[10] Kim S L et al 2000 Int. Conf. Microelectron. 641
[11] Merchant S et al 2002 Proc. ISPSD 185
[12] Ludikhuize A W et al 2002 Proc. ISPSD 77
[13] Kanechika M et al 2005 IEEE Trans. Electron Devices 52 1205
[14] Ho C H et al 2009 Chin. Phys. Lett. 26 017303
[15] Kumar M J and Sithanandam R IEEE Trans. Electron Devices 57 1719
[16] Cortes I et al 2012 Microelectron. Reliab. 52 503
[17] Luo X R et al 2011 IEEE Electron Device Lett. 32 185
[18] Luo X R et al 2012 IEEE Trans. Electron Devices 59 504
[19] Wang Z G et al 2012 IEEE Electron Device Lett. 33 703
[20] Ge R et al 2012 J. Semicond. 33 074005
[21] Wu L J et al 2013 Chin. Phys. Lett. 30 127102
[22] Yang H et al 2013 Proc. ISPSD 357
[23] Fan Y H et al 2013 Chin. Phys. Lett. 30 088503
[24] Li P C et al 2015 Chin. Phys. B 24 047304
[25] Li Q et al 2015 Chin. Phys. B 24 037203
[26] TMA MEDICI 4.2. Palo Alto CA: Technology Modeling Associates Inc.
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 098502
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 098502
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 098502
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 098502
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 098502
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 098502
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098502
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 098502
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098502
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 098502
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 098502
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 098502
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 098502
[14] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 098502
[15] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 098502
Viewed
Full text


Abstract