Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 097401    DOI: 10.1088/0256-307X/32/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A New Quantity to Characterize Stochastic Resonance
WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu**, WU Pei-Heng
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei et al  2015 Chin. Phys. Lett. 32 097401
Download: PDF(1207KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In a double-well system, we investigate theoretically the population distribution of a particle perturbed by a weak sinusoidal signal with a Gaussian white noise accompanied. Our numerical simulation shows that the probability of the particle staying in the right potential well, PR, exhibits an extreme value at specific noise intensity D depending on the frequency of the sinusoidal signal, which is a key feature of stochastic resonance. This is confirmed by calculating the power spectrum of the output signal, in which the extreme value of the amplitude locates at the same noise intensity. These results provide us with a new way to quantify the stochastic resonance by measuring the population distribution of the particle.
Received: 27 March 2015      Published: 02 October 2015
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  03.65.Sq (Semiclassical theories and applications)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/097401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yu-Xin
ZHAI Ji-Quan
XU Wei-Wei
SUN Guo-Zhu
WU Pei-Heng
[1] Gammaitoni L et al 1998 Rev. Mod. Phys. 70 223
[2] Harmer G, Davis B and Abbott D 2002 IEEE Trans. Instrum. Meas. 51 299
[3] Wellens T, Shatokhin V and Buchleitner A 2004 Rep. Prog. Phys. 67 45
[4] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[5] Benzi R et al 1983 Siam J. Appl. Math. 43 565
[6] Benzi R et al 1982 Tellus 34 10
[7] Fauve S and Heslot F 1983 Phys. Lett. A 97 5
[8] Mcnamara B, Wiesenfeld K and Roy R 1988 Phys. Rev. Lett. 60 2626
[9] Hibbs A D et al 1995 Nuovo Cimento Della Societa Italiana Di Fis. D-Condens. Matter At. Mol. Chem. Phys. Fluids Plasmas BioPhys. 17 811
[10] Hibbs A D et al 1995 J. Appl. Phys. 77 2582
[11] Rouse R, Han S Y and Lukens J E 1995 Appl. Phys. Lett. 66 108
[12] Sun G Z et al 2007 Phys. Rev. E 75 021107
[13] Pan C et al 2009 Phys. Rev. E 79 030104
[14] Li J H 2014 Chin. Phys. Lett. 31 030502
[15] Li J H 2014 Chin. Phys. Lett. 31 060505
[16] Li J H 2014 Commun. Theor. Phys. 61 710
[17] Hohmann W, Muller J and Schneider F W 1996 J. Phys. Chem. 100 5388
[18] Moss F 1994 Biophys. J. 66 A250
[19] Gammaitoni L et al 1989 Phys. Rev. A 40 2114
[20] Jung P and Hanggi P 1989 Europhys. Lett. 8 505
[21] Jung P and Hanggi P 1991 Phys. Rev. A 44 8032
[22] Mcnamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
[23] Li J H and Chen S G 2004 Phys. Rev. Lett. 93 014102
[24] Li J H 2007 Phys. Rev. E 76 021113
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 097401
[2] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 097401
[3] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 097401
[4] Shaohua Wang, Qiangwei Yin, Hechang Lei. Physical Properties of [$A_{6}$Cl][Fe$_{24}$Se$_{26}$]($A$=K, Rb) with Self-Similar Structure[J]. Chin. Phys. Lett., 2020, 37(1): 097401
[5] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 097401
[6] Feng Li, Wei Peng, Zhen Wang. The 0–$\pi$ Phase Transition in Epitaxial NbN/Ni$_{60}$Cu$_{40}$/NbN Josephson Junctions[J]. Chin. Phys. Lett., 2019, 36(4): 097401
[7] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 097401
[8] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 097401
[9] Jing-Hui Li. Enhancement of Resonant Activation by Constant Bias Current for Superconducting Junction[J]. Chin. Phys. Lett., 2016, 33(11): 097401
[10] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 097401
[11] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 097401
[12] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 097401
[13] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 097401
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 097401
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 097401
Viewed
Full text


Abstract