Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 094202    DOI: 10.1088/0256-307X/32/9/094202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method
MA Ye-Wan**, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie
School of Physics and Electric Engineering, Anqing Normal University, Anqing 246011
Cite this article:   
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua et al  2015 Chin. Phys. Lett. 32 094202
Download: PDF(495KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discrete-dipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω? shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect.
Received: 17 April 2015      Published: 02 October 2015
PACS:  42.25.-p (Wave optics)  
  42.25.Hz (Interference)  
  42.62.-b (Laser applications)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/094202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/094202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Ye-Wan
WU Zhao-Wang
ZHANG Li-Hua
LIU Wan-Fang
ZHANG Jie
[1] Warnes W L, Dereux A and Bobesen T W 2003 Nature 424 824
[2] Nie S and Enmory S R 1997 Science 275 1102
[3] Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
[4] Maier S A 2007 Plasmonics: Fundamentals Application (New York: Springer) p 382
[5] Novotny L and Hecht B 2006 Principle Nano-Opt. (Cambridge: Cambridge University Press) p 66
[6] Ji Y, Yun B F, Hu G H and Cui Y P 2009 Chin. Phys. Lett. 26 014205
[7] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[8] Zhang X F and Yan B 2013 Acta Phys. Sin. 62 03805 (in Chinese)
[9] Ma Y W, Wu Zh W, Zhang L H, Zhang J, Jian G S and Pan S 2013 Plasmonics 8 1351
[10] Ma Y W, Wu Zh W, Zhang L H and Zhang J 2010 Chin. Phys. Lett. 27 064204
[11] Aubry A, Lei D Y, Maier S A and Pendry J B 2010 Phys. Rev. Lett. 105 233901
[12] Gresho P M and Sani R L 2010 Incompressible Flow Finite Element Method. (New York: Wiley) p 1
[13] Taflove A 2000 Comput. ElectroDyn.: Finite Difference Time Domain Method. (Norwood MA: Artech House) p 1
[14] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[15] Draine B T and Flatau P J 2012 arXiv:1202.3424 [physics.comp-ph]
[16] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[17] Kreibig U and Vollmer M 1995 Opt. Properties Met. Clusters (Berlin: Springer) p 100
[18] Prodan E, Radbloff C, Halas N J and Nordander P 2003 Science 302 419
[19] Prodan E and Nordander P 2004 J. Chem. Phys. 120 5444
[20] Pea-Rodríguez O, Pal U, Rodríguez-Iglesias V, Rodríguez-Fernadez L and Oliver A 2011 J. Opt. Soc. Am. B 28 714
Related articles from Frontiers Journals
[1] Gangyi Zhu, Mufei Tian, M. Almokhtar, Feifei Qin, Binghui Li, Mengyao Zhou, Fei Gao, Ying Yang, Xin Ji, Siqing He, and Yongjin Wang. Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness[J]. Chin. Phys. Lett., 2022, 39(12): 094202
[2] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 094202
[3] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 094202
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 094202
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 094202
[6] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 094202
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 094202
[8] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 094202
[9] DU Ying-Jie, XIE Xiao-Tao, YU Jin-Ying, BAI Jin-Tao. Kuznetsov–Ma Soliton in Coupled Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(07): 094202
[10] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 094202
[11] ZENG Xiang-Kai, WEI Lai. Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices[J]. Chin. Phys. Lett., 2012, 29(12): 094202
[12] LING Xiao-Hui, LUO Hai-Lu, TANG Ming, WEN Shuang-Chun. Enhanced and Tunable Spin Hall Effect of Light upon Reflection of One-Dimensional Photonic Crystal with a Defect Layer[J]. Chin. Phys. Lett., 2012, 29(7): 094202
[13] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 094202
[14] LU Zhi-Xin, YU Li, **, LIU Bing-Can, , ZHANG Kai, SONG Gang, . Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide[J]. Chin. Phys. Lett., 2011, 28(8): 094202
[15] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 094202
Viewed
Full text


Abstract