CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Preparation of Ta-Doped TiO2 Using Ta2O5 as the Doping Source |
XU Cheng1**, LIN Di1, NIU Ji-Nan1, QIANG Ying-Huai1, LI Da-Wei2, TAO Chun-Xian3 |
1School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 3Shanghai Key Laboratory of Modern Optics System, School of Optics-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093
|
|
Cite this article: |
XU Cheng, LIN Di, NIU Ji-Nan et al 2015 Chin. Phys. Lett. 32 088102 |
|
|
Abstract A novel method for preparing Ta-doped TiO2 via using Ta2O5 as the doping source is proposed. The preparation process combines the hydrothermal fluorination of Ta2O5 and the subsequent formation of Ta-doped TiO2 sol. The results show that the doped sample annealed at 393 K generates an unstable intermediate NH4TiOF3, which converts into anatase TiO2 with the increase of temperature. After annealing at ≥673 K, the Ta-doped TiO2 nanocrystals with the grain size <20 nm are obtained. Both the XRD and TG-DSC results confirm that Ta doping prevents the anatase-rutile crystal transition of TiO2. The band gap values of the doped samples, as obtained by UV-vis diffuse reflectance spectra, are smaller than that of pure anatase TiO2. The first-principle pseudopotential method calculations indicate that Ta5+ lies in the TiO2 lattice at the interstitial position.
|
|
Received: 28 April 2015
Published: 02 September 2015
|
|
PACS: |
81.15.Ef
|
|
|
68.60.-p
|
(Physical properties of thin films, nonelectronic)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
|
|
|
[1] Suda Y, Kawasaki H, Ueda T and Ohshima T 2004 Thin Solid Films 453 162 [2] Zukalova M, Zukal A, Kavan L, Nazeeruddin M K, Liska P and Gra1tze M 2005 Nano Lett. 5 1789 [3] Xu C, Yang S, Wang Z, Deng J, Zhao Y, Fan H, Qiang Y and Li D 2014 Chin. Phys. Lett. 31 074207 [4] Si P Z, Jiang W, Wang H X, Li Z F, Liu J J, Lee J G and Choi C J 2012 Mater. Lett. 68 161 [5] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425 [6] Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F and Huang S 2010 Adv. Funct. Mater. 20 509 [7] Stodolny M and Laniecki M 2009 Catal. Today 142 314 [8] Liu J, Yang H, Tan W, Zhou X and Lin Y 2010 Electrochim. Acta 56 396 [9] Mohammadi M R, Fray D J, Sadrnezhaad S K and Mohammadi A 2007 Mater. Sci. Eng. B 142 16 [10] Qi D, Lu J, Deng C and Zhang X 2009 J. Chromatogr. A 1216 5533 [11] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 [12] Atuchin V V, Khyzhun O Y, Chimitova O D, Molokeev M S, Gavrilova T A, Bazarov B G and Bazarova J G 2015 J. Phys. Chem. Solids 77 101 [13] Xu C, Xu L, Zhang H, Qiang Y, Zhu Y, Liu J and Shao J 2011 Chin. Phys. Lett. 28 064211 [14] Atuchin V V, Grivel J C, Korotkov A S and Zhang Z 2008 J. Solid State Chem. 181 1285 [15] Harizanov O and Harizanova A 2000 Sol. Energ. Mat. Sol. C 63 185 [16] Park J Y, Yun J J, Hwang C H and Lee I H 2010 Mater. Lett. 64 2692 [17] Laptash N M, Merkulov E B and Maslennikova I G 2001 J. Therm. Anal. Calorim. 63 197 [18] Mechiakh R, Meriche F, Kremer R, Bensaha R, Boudine B and Boudrioua A 2007 Opt. Mater. 30 645 [19] Shvets V A, Aliev V Sh, Gritsenko D V, Shaimeev S S, Fedosenko E V, Rykhlitski S V, Atuchin V V, Gritsenko V A, Tapilin V M and Wong H 2008 J. Non-Cryst. Solids 354 3025 [20] Xu C, Yi P, Fan H, Qi J, Qiang Y, Liu J, Tao C and Li D 2014 Appl. Surf. Sci. 289 141 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|