Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088101    DOI: 10.1088/0256-307X/32/8/088101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Defect Reduction in GaAs/Si Films with the a-Si Buffer Layer Grown by Metalorganic Chemical Vapor Deposition
WANG Jun**, HU Hai-Yang, HE Yun-Rui, DENG Can, WANG Qi, DUAN Xiao-Feng, HUANG Yong-Qing, REN Xiao-Min
Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications; State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876
Cite this article:   
WANG Jun, HU Hai-Yang, HE Yun-Rui et al  2015 Chin. Phys. Lett. 32 088101
Download: PDF(2005KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The growth of GaAs epilayers on silicon substrates with a thin amorphous silicon (a-Si) buffer layer by metalorganic chemical vapor deposition is investigated in detail. Combining with the two-step growth method, the growth conditions of the a-Si buffer layer are optimized for growth of high-quality GaAs/Si epilayers. The a-Si buffer layer exhibits the best effect with thickness of 1.8 nm and growth temperature of 620°C. It is found that the introduction of this a-Si layer on Si substrates effectively reduces the dislocation density in GaAs/Si films. As compared with the dislocation density of 5×107 cm?2 in the GaAs/Si sample without the a-Si layer, a density of 3×105 cm?2 is achieved in the sample with the a-Si layer, and the defect reduction mechanism is discussed in detail.
Received: 19 January 2015      Published: 02 September 2015
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.Bk (Growth from vapor)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jun
HU Hai-Yang
HE Yun-Rui
DENG Can
WANG Qi
DUAN Xiao-Feng
HUANG Yong-Qing
REN Xiao-Min
[1] Won R and Paniccia M 2010 Nat. Photon. 4 498
[2] Jalali B and Fathpour S 2006 J. Lightwave Technol. 24 4600
[3] Zhou X J, Tang C W, Li Q and Lau K M 2012 Phys. Status Solidi A 209 1380
[4] Shi Y B et al 2012 Materials 5 2917
[5] Li J, Guo H, Liu J, Tang J, Ni H Q, Shi Y B, Xue C Y, Niu Z C, Zhang W D, Li M F and Yu Y 2013 Nanoscale Res. Lett. 8 218
[6] Ma K, Urata R, David A M and James S H 2004 IEEE J. Quantum Electron. 40 800
[7] Chen R, Tran T, Ng K, Ko W S, Chuang L, Sedgwick F and Chang C 2011 Nat. Photon. 5 170
[8] Liang D and Bowers J 2010 Nat. Photon. 4 511
[9] Han L S, Zhu H L, Zhang C, Ma L, Liang S and Wang W 2013 Chin. Phys. Lett. 30 108501
[10] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416
[11] Michel J, Liu J and Kimerling L C 2010 Nat. Photon. 4 527
[12] Bolkhovityanov Y B and Pchelyakov O P 2008 Sov. Phys. Usp. 51 437
[13] Linder K K, Phillips J, Qasaimeh O, Liu X F, Krishna S and Bhattacharya P 1999 Appl. Phys. Lett. 74 1355
[14] Huang H, Ren X M, Lv J H, Wang Q, Song H L, Cai S W, Huang Y Q and Qu B 2008 J. Appl. Phys. 104 113114
[15] Wang J, Deng C, Jia Z G, Wang Y F, Wang Q, Huang Y Q and Ren X M 2013 Chin. Phys. Lett. 30 116801
[16] Wang Y F, Wang Q, Jia Z G, Li X Y, Deng C, Ren X M, Cai S W and Huang Y Q 2013 J. Vac. Sci. Technol. B 31 051211
[17] Lee S C, Dawson L R, Huang S H and Brueck S R J 2011 Cryst. Growth Des. 11 3673
[18] Cheng S F, Gao L, Woo R L, Pangan A, Malouf G, Goorsky M S, Wang K L and Hicks R F 2008 J. Cryst. Growth 310 562
[19] Kataria H, Metaferia W, Junesand C, Zhang C, Julian N, Bowers J and Lourdudoss S 2014 IEEE J. Sel. Top. Quantum Electron. 20 8201407
[20] Kazi Z I, Egawa T, Jimbo T and Umeno M 1999 IEEE Photon. Technol. Lett. 11 1563
[21] Lee S C and Brueck S R J 2009 Appl. Phys. Lett. 94 153110
[22] Stringfellow G B 1999 Organometallic Vaporphase Epitaxy: Theory and Practice (San Diego: Academic Press)
[23] Ismail K, Legoues F, Karam N H, Carter J and Smith H I 1991 Appl. Phys. Lett. 59 2418
[24] Uen Y W, Li Z Y, Lan S M, Yang T N and Shin H Y 2006 Semicond. Sci. Technol. 21 852
[25] Uen Y W, Li Z Y, Huang Y C, Chen M C, Yang T N, Lan S M, Wu C H, Hong H F and Chi G C 2006 J. Cryst. Growth 295 103
[26] Hao M S, Liang J W, Zheng L X, Deng L, Xiao Z and Hu X 1995 Jpn. J. Appl. Phys. 34 L900
[27] Hao M S, Liang J W, Jin X J, Wang Y T, Deng L S, Xiao Z B, Zheng L X and Hu X W 1996 Chin. Phys. Lett. 13 42
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 088101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 088101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 088101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 088101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 088101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 088101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 088101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 088101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 088101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 088101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 088101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 088101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 088101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 088101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 088101
Viewed
Full text


Abstract