Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 078401    DOI: 10.1088/0256-307X/32/7/078401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2
DONG Juan1, XU Xin1, SHI Jiang-Jian1, LI Dong-Mei1, LUO Yan-Hong1, MENG Qing-Bo1**, CHEN Qiang2**
1Key Laboratory for Renewable Energy (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600
Cite this article:   
DONG Juan, XU Xin, SHI Jiang-Jian et al  2015 Chin. Phys. Lett. 32 078401
Download: PDF(845KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract ZnO nanorods are passivated with a TiO2 interfacial layer prepared by the atomic layer deposition method and applied in the CH3NH3PbI3 perovskite solar cell, which show a positive effect on the fill factor and power conversion efficiency. With TiO2 interfacial passivation, the charge recombination in the ZnO/CH3NH3PbI3 interface is effectively suppressed and the maximum power conversion efficiency is enhanced from 11.9% to 13.4%.
Received: 17 January 2015      Published: 30 July 2015
PACS:  84.60.Jt (Photoelectric conversion)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/078401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/078401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Juan
XU Xin
SHI Jiang-Jian
LI Dong-Mei
LUO Yan-Hong
MENG Qing-Bo
CHEN Qiang
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Shi J J, Dong W, Xu Y Y, Li C H, Lv S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q 2013 Chin. Phys. Lett. 30 128402
[4] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
[6] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2014 Prog. Photovolt.: Res. Appl. 22 701
[7] Im J H, Jang I H, Pellet N, Gr?tzel M and Park N G 2014 Nat. Nanotechnol. 181
[8] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[9] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
[10] Park N G 2013 J. Phys. Chem. Lett. 4 2423
[11] Bi D, Moon S J, H ?ggman L, Boschloo G, Yang L, Johansson E M, Nazeeruddin M K, Gr?tzel M and Hagfeldt A 2013 RSC Adv. 3 18762
[12] Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H and Yang S 2013 Nanoscale 5 3245
[13] Li W, Dong H, Guo X, Li N, Li J, Niu G and Wang L 2014 J. Mater. Chem. A 2 20105
[14] Son D Y, Im J H, Kim H S and Park N G 2014 J. Phys. Chem. C 118 16567
[15] Kim K D, Lim D C, Hu J, Kwon J D, Jeong M G, Seo H O, Lee J Y, Jang K Y, Lim J H, Lee K H, Jeong Y, Kim Y D and Cho S 2013 ACS Appl. Mater. Inter. 5 8718
[16] Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y and Meng Q 2014 Chem. Commun. 50 13381
[17] George S M 2010 Chem. Rev. 110 111
[18] Xu C, Shin P, Cao L and Gao D 2010 J. Phys. Chem. C 114 125
[19] Wang H, Kubo T, Nakazaki J, Kinoshita T and Segawa H 2013 J. Phys. Chem. Lett. 4 2455
[20] Massimo T, Chittaranjan D and Dieter S 2014 Beilstein J. Nanotechnol. 5 77
[21] Dey N K, Kim M J, Kim K D, Seo H O, Kim D, Kim Y D, Lim D C and Lee K H 2011 J. Mol. Catal. A-Chem. 337 33
[22] Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q and Li X 2014 Chem. Commun. 50 6931
[23] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y and Meng Q 2014 Appl. Phys. Lett. 104 063901
[24] Fabregat S F, Garcia B G, Mora S I and Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083
[25] Gonzalez P V, Juarez P E J, Arsyad W S, Barea E M, Fabregat S F, Mora S I and Bisquert J 2014 Nano Lett. 14 888
[26] Juarez P E J, Wu?ler M, Fabregat S F, Lakus W K, Mankel E, Mayer T, Jaegermann W and Mora S I 2014 J. Phys. Chem. Lett. 5 680
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 078401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 078401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 078401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 078401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 078401
[6] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 078401
[7] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 078401
[8] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 078401
[9] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 078401
[10] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 078401
[11] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 078401
[12] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 078401
[13] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 078401
[14] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 078401
[15] LI Li, YU Dong, WU Shi-Liang, WANG Wei, LIU Wen-Chao, WU Xiao-Shan, ZHANG Feng-Ming. Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction[J]. Chin. Phys. Lett., 2015, 32(11): 078401
Viewed
Full text


Abstract