CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication of IBAD-MgO and PLD-CeO2 Layers for YBCO Coated Conductors |
MU Qing-Qing, LIU Lin-Fei, LI Yi-Jie** |
Key Laboratory of Artificial Structure and Quantum Control, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
|
|
Cite this article: |
MU Qing-Qing, LIU Lin-Fei, LI Yi-Jie 2015 Chin. Phys. Lett. 32 078102 |
|
|
Abstract MgO thin films with different textures are fabricated by the ion beam assisted (IBAD) method on the Y2O3/Al2O3 buffered C276 tape. Then a CeO2 layer is directly grown on the IBAD-MgO film by the pulsed laser deposition (PLD) method. Effects of IBAD-MgO texture, substrate temperature and thickness on the grain alignment of the CeO2 layer are investigated. Film characterization is performed by x-ray diffraction and atomic force microscopy. It is found that the orientation and texture degree of the CeO2 layer are very sensitive to the IBAD-MgO texture. By optimizing the IBAD-MgO texture, CeO2 has pure (002) orientation and excellent biaxial texture deposited in a broad substrate temperature range. In addition, the PLD-CeO2 layer has a thickness effect. Under the optimized experimental condition, the PLD-CeO2 layer has a high in-plane texture of Δφ=2.9° and a smooth surface with an rms surface roughness of less than 2 nm. The critical current density Jc of a 0.4-μm-thick YBCO film deposited on the CeO2 layer is 6.25×106 A/cm2 at 77 K and a self-field.
|
|
Received: 27 January 2015
Published: 30 July 2015
|
|
PACS: |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
84.71.Mn
|
(Superconducting wires, fibers, and tapes)
|
|
|
|
|
[1] Aytug T, Paranthaman M, Zhai H Y et al 2004 Appl. Phys. Lett. 85 2887 [2] Shiohara Y, Yoshizumi M, Takagi Y et al 2013 Physica C 484 1 [3] Goyal A, Paranthaman M P and Schoop U 2004 MRS Bull. 29 552 [4] Kreiskott S, Arendt P N, Coulter J Y et al 2004 Supercond. Sci. Technol. 17 S132 [5] Balachandran U, Ma B, Li M et al 2002 Physica C 378 950 [6] Xiong X, Lenseth K P, Reeves J L et al 2007 IEEE Trans. Appl. Supercond. 17 3375 [7] Yamada Y, Miyata S, Yoshizumi M et al 2009 IEEE Trans. Appl. Supercond. 19 3236 [8] Hanyu S, Tashita C, Hanada Y et al 2010 Supercond. Sci. Technol. 23 014017 [9] Paranthaman M, Aytug T, Christen D K et al 2003 J. Mater. Res. 18 2055 [10] Bhuiyan M S, Paranthaman M, Sathyamurthy S et al 2003 Supercond. Sci. Technol. 16 1305 [11] Xu D, Liu L, Wang Y et al 2012 J. Supercond. Novel Magn. 25 197 [12] Muroga T, Iwai H, Yamada Y et al 2003 Physica C 392 796 [13] Muroga T, Araki T, Niwa T et al 2003 IEEE Trans. Appl. Supercond. 13 2532 [14] Muroga T, Watanabe T, Miyata S et al 2004 Physica C 412 807 [15] Muroga T, Miyata S, Watanabe T et al 2005 Physica C 426 904 [16] Hanyu S, Tashita C, Hanada Y et al 2010 Physica C 470 S1025 [17] Guo X, Zhang S, Bao Z et al 2011 Chin. Phys. Lett. 28 028103 [18] Luo Q, Liu L, Xiao G et al 2014 J. Supercond. Novel Magn. 27 1419 [19] Jiang X and Hao B 2010 J. Cryst. Growth 312 1844 [20] Ramay S M, Siddiqi S A, Anwar M S et al 2009 Chin. Phys. Lett. 26 117504 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|