CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature |
M. Chitra1, K. Uthayarani1**, N. Rajasekaran2, N. Neelakandeswari2, E. K. Girija3, D. Pathinettam Padiyan4 |
1Department of Physics, Sri Ramakrishna Engineering College, Coimbatore 641022, India 2Department of Chemistry, Sri Ramakrishna Engineering College, Coimbatore 641022, India 3Department of Physics, Periyar University, Salem 636011, India 4Department of Physics, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli 627012, India
|
|
Cite this article: |
M. Chitra, K. Uthayarani, N. Rajasekaran et al 2015 Chin. Phys. Lett. 32 078101 |
|
|
Abstract Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10–40 nm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42 s) and recovery (40 s) towards ethanol at 300 K. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.
|
|
Received: 09 April 2015
Published: 30 July 2015
|
|
PACS: |
81.05.Dz
|
(II-VI semiconductors)
|
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
|
|
|
[1] Pantelis N T, Kasthuri R K, Thomas B and Mercouri G K 2001 Nature 410 671 [2] Gao M R, Xu Y F, Jiang J and Yu S H 2013 C Hem. Soc. Rev. 42 2986 [3] Zha Y L, Samuel F, Stanley J C and Craig B A 2013 J. Non-Cryst. Solids 369 11 [4] Tang X Y, Gao H, Pan S M, Sun J B, Yao X W and Z hang X T 2014 Acta Phys. Sin. 63 197302 (in Chinese) [5] Zhao H X, Chen X L, Yang X, Du J, Bai L S, Chen Z, Zhao Y, Zhang X D 2014 Acta Phys. Sin. 63 056801 (in Chinese) [6] Wu P, Zhang J, Li X F, Chen L X, Wang L and Lü J G 2013 Acta Phys. Sin. 62 018101 (in Chinese) [7] Li H D, Lü H, Sang D D, Li D M, Li B, Lü X Y and Zou G T 2008 Chin. Phys. Lett. 25 3794 [8] Huang H Q, Sun J, Liu F J, Zhao J W, Hu Z F, Li Z J, Zhang X Q and Wang Y S 2011 Chin. Phys. Lett. 28 128502 [9] Ding B F 2012 Chin. Phys. Lett. 29 038201 [10] Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303 [11] Wu Y N, Xu M, Dong C J, Zhang P P, Ji H X, He L and Wu D C 2011 Acta Phys. Sin. 60 077505 (in Chinese) [12] Zhong W W, Liu F M, Cai L G, Ding P, Liu X Q and Li Yi 2011 Acta Phys. Sin. 60 118102 (in Chinese) [13] Zhang Z L, Zheng G, Qu F Y and Wu X 2012 Chin. Phys. B 21 098104 [14] Li M J, Gao H, Li J L, Wen J, Li K and Zhang W G 2013 Acta Phys. Sin. 62 187302 (in Chinese) [15] Feng Q J, Jiang J Y, Tao P C, Liu S, Xu R Z, Li M K and Sun J C 2011 Chin. Phys. Lett. 28 108103 [16] Zhang Y and Diao D S 2009 Chin. Phys. Lett. 26 038101 [17] Shi W, Tai Q, Xia X H, Yi M D, Xie L H, Fan Q L, Wang L H, Wei A and Huang W 2012 Chin. Phys. Lett. 29 087201 [18] Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D and Geng X H 2012 Acta Phys. Sin. 61 238101 (in Chinese) [19] Thilagavathi T and Geetha D 2014 Appl. Nanosci. 4 127 [20] Dong J J, Zhen C Y, Hao H Y, Xing J, Fan Z J and Zhang Z L 2014 Jpn. J. Appl. Phys. 53 055201 [21] Liu Z T, Fan T X, Zhang D, Gong X L and Xu J Q 2009 Sens. Actuators B 136 499 [22] Nabanita P and Asim B 2013 Adv. Colloid Interface Sci. 189 21 [23] Song P, Zhang H H, Han D, Li J, Yang Z X and Wang Q 2014 Sens. Actuators B 196 140 [24] Song P, Wang Q, Zhang Z and Yang Z X 2010 Sens. Actuators B 147 248 [25] Cui J J, He W, Liu H T, Liao S J and Yue Y Z 2009 Colloids Surfaces B: Biointerfaces 74 274 [26] Hsua C L, Gao Y D, Chen Y S and Hsueh T J 2014 Sens. Actuators B 192 550 [27] Song P, Wang Q and Yang Z X 2011 Sens. Actuators B 156 983 [28] Song P, Han D, Zhang H H, Jia Li, Yang Z X and Wang Q 2014 Sens. Actuators B 196 434 [29] Zeng Y, Zhang T, Fan H T, Lu G Y, Kang M H 2009 Sens. Actuators B 143 449 [30] Dhayal R A, Pazhanivel T, Suresh Kumar P, Mangalaraj D, Nataraj D and Ponpandian N 2010 Curr. Appl. Phys. 10 531 [31] Chen Y, Zhu Y C, Wang Z C, Li Y, Wang L L, Ding L L, Gao X Y, Ma Y J and Guo Y P 2011 Adv. Colloid Interface Sci. 163 39 [32] Zhang W H and Zhang W D 2008 Sens. Actuators B 134 403 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|