GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test |
ZHU Wen-Tao, WU Pu-Xun**, YU Hong-Wei |
Center of Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211
|
|
Cite this article: |
ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei 2015 Chin. Phys. Lett. 32 059501 |
|
|
Abstract The Sandage–Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2<z<5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.
|
|
Received: 20 November 2014
Published: 01 June 2015
|
|
|
|
|
|
[1] Riess A G et al 1998 Astron. J. 116 1009 [2] Perlmutter S et al 1999 Astrophys. J. 517 565 [3] De Bernardis P et al 2000 Nature 404 955 [4] Spergel D N et al 2003 Astrophys. J. Suppl. Ser. 148 175 [5] Eisenstein D J et al 2005 Astrophys. J. 633 560 [6] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559 [7] Carroll S M 2001 Living Rev. Relativ. 4 1 [8] Wetterich C 1988 Nucl. Phys. B 302 668 [9] Zhao W 2007 Chin. Phys. B 16 2830 [10] Gui Y X, Wang F J and Ma C R 2007 Chin. Phys. Lett. 24 3286 [11] Liang N, Gao C J and Zhang S N 2009 Chin. Phys. Lett. 26 069501 [12] Caldwell R R, Kamionkowski M and Weinberg N N 2003 Phys. Rev. Lett. 91 071301 [13] Arbab A I 2008 Chin. Phys. Lett. 25 4497 [14] Armendariz-Picon C, Mukhanov V and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438 [15] Yang R J et al 2011 Chin. Phys. Lett. 28 109502 [16] Zhang S N and Yang R J 2008 Chin. Phys. Lett. 25 344 [17] Kamenshchik A et al 2001 Phys. Lett. B 511 265 [18] Bento M C et al 2002 Phys. Rev. D 66 043507 [19] Popov V A 2010 Phys. Lett. B 686 211 [20] Popov V A 2011 J. Cosmol. Astropart. Phys. 10 009 [21] Sandage A 1962 Astrophys. J. 136 319 [22] Loeb A 1998 Astrophys. J. Lett. 499 L111 [23] Pasquini L et al 2005 Messenger 122 10 [24] Pasquini L et al 2005 Proc. Int. Astron. Union 1 193 [25] Liske J et al 2008 Mon. Not. R. Astron. Soc. 386 1192 [26] Corasaniti P S et al 2007 Phys. Rev. D 75 062001 [27] Balbi A and Quercellini C 2007 Mon. Not. R. Astron. Soc. 382 1623 [28] Zhang H B et al 2007 Phys. Rev. D 76 123508 [29] Zhang J et al 2010 Phys. Lett. B 691 11 [30] Yuan S et al 2015 J. Cosmol. Astropart. Phys. 2 025 [31] Martinelli M et al 2012 Phys. Rev. D 86 123001 [32] Darling J 2012 Astrophys. J. Lett. 761 L26 [33] Yu H R, Zhang T J and Pen U L 2014 Phys. Rev. Lett. 113 041303 [34] Geng J J, Zhang J F and Zhang X 2014 J. Cosmol. Astropart. Phys. 12 018 [35] Li Z, Liao K, Wu P, Yu H and Zhu Z H 2013 Phys. Rev. D 88 023003 [36] Bouchy F, Pepe F and Queloz D 2001 Astron. Astrophys. 374 733 [37] Bennett C L et al 2013 Astrophys. J. Suppl. Ser. 208 20 [38] Suzuki N et al 2012 Astrophys. J. 746 85 [39] Sollerman J et al 2009 Astrophys. J. 703 1374 [40] Li Z, Wu P and Yu H 2012 Astrophys. J. 744 176 [41] Percival W J et al 2010 Mon. Not. R. Astron. Soc. 401 2148 [42] Blake C et al 2011 Mon. Not. R. Astron. Soc. 418 1707 [43] Lazkoz R, Montiel A and Salzano V 2012 Phys. Rev. D 86 103535 [44] Yang R J 2014 Phys. Rev. D 89 063014 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|