Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 059501    DOI: 10.1088/0256-307X/32/5/059501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test
ZHU Wen-Tao, WU Pu-Xun**, YU Hong-Wei
Center of Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei 2015 Chin. Phys. Lett. 32 059501
Download: PDF(1138KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Sandage–Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2<z<5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.
Received: 20 November 2014      Published: 01 June 2015
PACS:  95.36.+x (Dark energy)  
  98.80.-k (Cosmology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/059501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/059501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Wen-Tao
WU Pu-Xun
YU Hong-Wei
[1] Riess A G et al 1998 Astron. J. 116 1009
[2] Perlmutter S et al 1999 Astrophys. J. 517 565
[3] De Bernardis P et al 2000 Nature 404 955
[4] Spergel D N et al 2003 Astrophys. J. Suppl. Ser. 148 175
[5] Eisenstein D J et al 2005 Astrophys. J. 633 560
[6] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
[7] Carroll S M 2001 Living Rev. Relativ. 4 1
[8] Wetterich C 1988 Nucl. Phys. B 302 668
[9] Zhao W 2007 Chin. Phys. B 16 2830
[10] Gui Y X, Wang F J and Ma C R 2007 Chin. Phys. Lett. 24 3286
[11] Liang N, Gao C J and Zhang S N 2009 Chin. Phys. Lett. 26 069501
[12] Caldwell R R, Kamionkowski M and Weinberg N N 2003 Phys. Rev. Lett. 91 071301
[13] Arbab A I 2008 Chin. Phys. Lett. 25 4497
[14] Armendariz-Picon C, Mukhanov V and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438
[15] Yang R J et al 2011 Chin. Phys. Lett. 28 109502
[16] Zhang S N and Yang R J 2008 Chin. Phys. Lett. 25 344
[17] Kamenshchik A et al 2001 Phys. Lett. B 511 265
[18] Bento M C et al 2002 Phys. Rev. D 66 043507
[19] Popov V A 2010 Phys. Lett. B 686 211
[20] Popov V A 2011 J. Cosmol. Astropart. Phys. 10 009
[21] Sandage A 1962 Astrophys. J. 136 319
[22] Loeb A 1998 Astrophys. J. Lett. 499 L111
[23] Pasquini L et al 2005 Messenger 122 10
[24] Pasquini L et al 2005 Proc. Int. Astron. Union 1 193
[25] Liske J et al 2008 Mon. Not. R. Astron. Soc. 386 1192
[26] Corasaniti P S et al 2007 Phys. Rev. D 75 062001
[27] Balbi A and Quercellini C 2007 Mon. Not. R. Astron. Soc. 382 1623
[28] Zhang H B et al 2007 Phys. Rev. D 76 123508
[29] Zhang J et al 2010 Phys. Lett. B 691 11
[30] Yuan S et al 2015 J. Cosmol. Astropart. Phys. 2 025
[31] Martinelli M et al 2012 Phys. Rev. D 86 123001
[32] Darling J 2012 Astrophys. J. Lett. 761 L26
[33] Yu H R, Zhang T J and Pen U L 2014 Phys. Rev. Lett. 113 041303
[34] Geng J J, Zhang J F and Zhang X 2014 J. Cosmol. Astropart. Phys. 12 018
[35] Li Z, Liao K, Wu P, Yu H and Zhu Z H 2013 Phys. Rev. D 88 023003
[36] Bouchy F, Pepe F and Queloz D 2001 Astron. Astrophys. 374 733
[37] Bennett C L et al 2013 Astrophys. J. Suppl. Ser. 208 20
[38] Suzuki N et al 2012 Astrophys. J. 746 85
[39] Sollerman J et al 2009 Astrophys. J. 703 1374
[40] Li Z, Wu P and Yu H 2012 Astrophys. J. 744 176
[41] Percival W J et al 2010 Mon. Not. R. Astron. Soc. 401 2148
[42] Blake C et al 2011 Mon. Not. R. Astron. Soc. 418 1707
[43] Lazkoz R, Montiel A and Salzano V 2012 Phys. Rev. D 86 103535
[44] Yang R J 2014 Phys. Rev. D 89 063014
Related articles from Frontiers Journals
[1] D. Aberkane, N. Mebarki, S. Benchikh. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2017, 34(6): 059501
[2] Sara Benchikh, Noureddine Mebarki, Dalel Aberkane. Dynamical Study of a Constant Viscous Dark Energy Model in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2016, 33(05): 059501
[3] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 059501
[4] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 059501
[5] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 059501
[6] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 059501
[7] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 059501
[8] ZHANG Xiao-Fei, LIU Hui-Hui. A Dark Energy Model with Higher Derivative and Cosmological Evolution[J]. Chin. Phys. Lett., 2009, 26(10): 059501
[9] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models[J]. Chin. Phys. Lett., 2009, 26(8): 059501
[10] LIANG Nan, GAO Chang-Jun, ZHANG Shuang-Nan,. A Two-Field Dilaton Model of Dark Energy[J]. Chin. Phys. Lett., 2009, 26(6): 059501
[11] M. R. Setare. Interacting Holographic Dark Energy in the Scalar Gauss-Bonnet Gravity[J]. Chin. Phys. Lett., 2009, 26(2): 059501
[12] Arbab I. Arbab. Phantom Energy with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(12): 059501
[13] EL-NABULSI Ahmad Rami. Accelerated D-Dimensional Compactified Universe in Gauss--Bonnet--Dilatonic Scalar Gravity from D-Brane/M-Theory[J]. Chin. Phys. Lett., 2008, 25(8): 059501
[14] WU Xing, ZHU Zong-Hong. Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models[J]. Chin. Phys. Lett., 2008, 25(4): 059501
[15] YANG Rong-Jia, ZHANG Shuang-Nan,. Theoretical Constraint on Purely Kinetic k-Essence[J]. Chin. Phys. Lett., 2008, 25(1): 059501
Viewed
Full text


Abstract