Chin. Phys. Lett.  2015, Vol. 32 Issue (5): 058901    DOI: 10.1088/0256-307X/32/5/058901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game
DU Peng1, XU Chen1**, ZHANG Wen2
1College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006
2Department of Electronics and Communication Engineering, Suzhou Institute of Industrial Technology, Suzhou 215104
Cite this article:   
DU Peng, XU Chen, ZHANG Wen 2015 Chin. Phys. Lett. 32 058901
Download: PDF(539KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the cooperative behavior and the phase separation in a coevolving system. Agents in the system constructed by a regular random network initially play the snowdrift game with their neighbors. They try to obtain a better competing environment by imitating a neighbor's more successful strategy or cutting the connection to a defective neighbor and randomly rewiring to another agent so as to seek a better neighborhood. The dynamic process of strategy imitation and relationship among agents due to rewiring neighbors may drive the system into different states. The simulation results show that there are three different phases in the qr plane, where q is the rewiring probability and r is the cost-to-benefit ratio. One is a static phase of a pure cooperative cluster with a few isolated defectors. The other two belong to active phases with one of a main mixed-strategy cluster and the other of a pure defective state. We find that a simple mean field theory can predict correctly the static phase and the active phase of the main mixed-strategy cluster. The theoretical boundary line between the two phases is in good agreement with the simulation result.
Received: 30 December 2014      Published: 01 June 2015
PACS:  89.75.Fb (Structures and organization in complex systems)  
  87.23.Kg (Dynamics of evolution)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/5/058901       OR      https://cpl.iphy.ac.cn/Y2015/V32/I5/058901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Peng
XU Chen
ZHANG Wen
[1] Axelrod R and Hamilton W D 1981 Science 211 1390
[2] May R M 1981 Nature 292 291
[3] Nowak M A and May R M 1992 Nature 359 826
[4] Hauert C and Doebell M 2004 Nat. Mater. 428 643
[5] Wang Z et al 2012 Sci. Rep. 2 369
[6] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104
[7] Skyrms B 2004 The Stag Hunt and the Evolution of Social Structure (Cambridge: Cambridge University Press)
[8] Zheng D F et al 2007 Europhys. Lett. 80 18002
[9] Gruji? J et al 2010 PLoS ONE 5 e13749
[10] Rand D G et al 2011 Proc. Natl. Acad. Sci. USA 108 19193
[11] Droz M et al 2009 Eur. Phys. J. B 71 579
[12] Lu D L et al 2012 Chin. Phys. Lett. 29 088901
[13] Wang W X et al 2006 Phys. Rev. E 74 056113
[14] Ji M et al 2011 Phys. Rev. E 84 036113
[15] Zhang W et al 2013 Chin. Phys. Lett. 30 108902
[16] Santos F C et al 2006 Proc. Natl. Acad. Sci. USA 103 3490
[17] Ohtsuki H et al 2006 Nature 441 502
[18] Zhong L X et al 2006 Europhys. Lett. 76 724
[19] Roca C P et al 2006 Phys. Rev. Lett. 97 158701
[20] Rong Z et al 2010 Phys. Rev. E 82 026101
[21] Rong Z et al 2013 Europhys. Lett. 102 68005
[22] Wu Z X et al 2007 Physica A 379 672
[23] Szolnoki A et al 2008 Physica A 387 2075
[24] Vazquez F et al 2008 Phys. Rev. Lett. 100 108702
[25] Nardini C et al 2008 Phys. Rev. Lett. 100 158701
[26] Ji M et al 2013 New J. Phys. 15 113024
[27] Gross T et al 2006 Phys. Rev. Lett. 96 208701
[28] Shaw L and Schwartz L 2008 Phys. Rev. E 77 066101
[29] Gr?ser O et al 2011 Physica A 390 906
[30] Zimmermann M et al 2004 Phys. Rev. E 69 065102
[31] Zimmermann M and Eguíluz V M 2005 Phys. Rev. E 72 056118
[32] Gr?ser O et al 2009 Europhys. Lett. 87 38003
[33] Gr?ser O et al 2011 New J. Phys. 13 083015
[34] Zhang W et al 2014 Phys. Rev. E 90 052819
[35] Lee S et al 2011 Phys. Rev. Lett. 106 028702
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 058901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 058901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 058901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 058901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 058901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 058901
[7] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 058901
[8] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 058901
[9] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 058901
[10] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 058901
[11] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 058901
[12] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 058901
[13] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 058901
[14] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 058901
[15] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 058901
Viewed
Full text


Abstract