CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency |
ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei**, SUN Guo-Zhu**, WU Pei-Heng |
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin et al 2015 Chin. Phys. Lett. 32 047402 |
|
|
Abstract We investigate the distribution of the switching current of a current-biased Josephson junction (CBJJ) and its dependence on the microwave frequency using two theoretical methods, one of which is the quantum trajectory method and the other is the master equation method. Both the methods show that the distribution of the switching current of CBJJ will exhibit double peaks in a certain range of microwave frequency if proper microwave power is given, and the gap between the two peaks will increase with the microwave frequency. The obtained results can be used to identify the energy difference of the ground and first excited states in a Josephson junction for any bias current.
|
|
Received: 19 January 2015
Published: 30 April 2015
|
|
PACS: |
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
|
|
|
[1] Oppenlander J, Dangelmayr G and Guttinger W 1996 Phys. Rev. B 54 1213 [2] Pelka J and Zagrodzinski J 1993 Physica B 192 378 [3] Yu Y, Yu Z, Han S et al 2003 IEEE Trans. Appl. Supercond. 13 998 [4] Devoret, M H, Martinis J M, Esteve D et al 1987 Helv. Phys. Acta 60 122 [5] Devoret, M H, Martinis J M, Clarke J 1985 Phys. Rev. Lett. 55 1908 [6] Makhlin, Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357 [7] Cao W H, Feng Y H, Ye T et al 2009 Chin. Phys. B 18 5044 [8] Shen D D, Zhu R, Xu W W et al 2012 Chin. Sci. Bull. 57 409 [9] Xu Q Y, Cao C H, Li M Y et al 2011 Chin. Phys. Lett. 28 087403 [10] Imamura T, Shiota T, Hasuo S 1992 IEEE Trans. Appl. Supercond. 2 1 [11] Yuda M, Kuroda K, Nakano J 1987 Jpn. J. Appl. Phys. II 26 L166 [12] Sun G Z, Dong N, Mao C et al 2007 Phys. Rev. E 75 021107 [13] Fulton T A, Dunklebe L 1974 Phys. Rev. B 9 4760 [14] Kopietz P, Chakravarty S 1988 Phys. Rev. B 38 97 [15] Kramers H A 1940 Physica 7 284 [16] Hanggi P, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251 [17] Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211 [18] Wallraff A, Lukashenko A, Coqui C et al 2003 Rev. Sci. Instrum. 74 3740 [19] Clarke J, Cleland A N, Devoret M H et al 1988 Science 239 992 [20] Lombardi F 2007 Physica C 460-462 335 [21] Martinis, J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543 [22] Xu H, Berkley A J, Gubrud M A et al 2003 IEEE Trans. Appl. Supercond. 13 956 [23] Martinis J M, Nam S, Aumentado J et al 2002 Phys. Rev. Lett. 89 117901 [24] Yu Y, Han S, Chu X et al 2002 Science 296 889 [25] Wallraff A, Duty T, Lukashenko A et al 2003 Phys. Rev. Lett. 90 037003 [26] Sun G Z, Yi W, Cao J Y et al 1950 Phys. Rev. B 77 10 [27] Yu H F, Zhu X B, Peng Z H et al 2010 Phys. Rev. B 81 144518 [28] Wen X D, Wang Y, Dong N et al 2009 Supercond. Sci. Technol. 22 114016 [29] Likharev K K 1981 Physica B+C 108 1079 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|