CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors |
YU Guang1,2, WU Chen-Fei1,2, LU Hai1,2**, REN Fang-Fang1,2, ZHANG Rong1,2, ZHENG You-Dou1,2, HUANG Xiao-Ming3 |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 3Peter Grünberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003
|
|
Cite this article: |
YU Guang, WU Chen-Fei, LU Hai et al 2015 Chin. Phys. Lett. 32 047302 |
|
|
Abstract Ring oscillators based on indium gallium zinc oxide thin film transistors are fabricated on glass substrates. The oscillator circuit consists of seven delay stages and an output buffer inverter. The element inverter exhibits a voltage gain higher than ?6 V/V and a wide output swing close to 85% of the full swing range. The dynamic performance of the ring oscillators is evaluated as a function of supply voltage and at different gate lengths. A maximum oscillation frequency of 0.88 MHz is obtained for a supply voltage of 50 V, corresponding to a propagation delay of less than 85 ns/stage.
|
|
Received: 11 November 2014
Published: 30 April 2015
|
|
PACS: |
73.61.Jc
|
(Amorphous semiconductors; glasses)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.40.-e
|
(Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)
|
|
|
|
|
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [2] Hosono H 2006 J. Non-Cryst. Solids 352 851 [3] Yabuta H, Sano M, Abe K, Aiba T, Den T, Kumomi H and Hosono H 2006 Appl. Phys. Lett. 89 112123 [4] Hayashi R, Ofuji M, Kaji N, Takahashi K, Abe K, Yabuta H, Sano M, Kumomi H, Nomura K, Kamiya T, Hirano M and Hosono H 2007 J. Soc. Inf. Disp. 15 915 [5] Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M and Hosono H 2006 Jpn. J. Appl. Phys. 45 4303 [6] Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Jiang R, Zhang R, Zheng Y D and Xu Q Y 2013 Solid-State Electron. 86 41 [7] Huang X M, Wu C F, Lu H, Xu Q Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 067302 [8] Mativenga M, Choi M H, Choi J W and Jang J 2011 IEEE Trans. Electron Devices 32 170 [9] Ofuji M, Abe K, Shimiz H, Kaji N, Hayashi R, Sano M and Hosono H 2007 IEEE Trans. Electron Devices 28 273 [10] Suresh A, Wellenius P, Baliga V, Luo H, Lunardi L M and Muth J F 2010 IEEE Trans. Electron Devices 31 317 [11] Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G and Dong H 2007 Appl. Phys. Lett. 90 212114 [12] Cho I T, Lee J W, Park J M, Cheong W S, Hwang C S, Kwak J S and Lee J H 2012 IEEE Trans. Electron Devices 33 1726 [13] Kang D H, Kang I, Ryu S H and Jang J 2011 IEEE Trans. Electron Devices 32 1385 [14] Hoffman R L 2004 J. Appl. Phys. 95 5813 [15] Wellenius P, Suresh A, Luo H, Lunardi L M and Muth J F 2009 J. Display Technol. 5 438 [16] Presley R E, Hong D, Chiang H Q, Hung C M, Hoffman R L and Wager J F 2006 Solid-State Electron. 50 500 [17] Sun J, Mourey D A, Zhao D, Park S K, Nelson S F, Levy D H and Jackson T N 2008 IEEE Trans. Electron Devices 29 721 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|