CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fabrication and Characterization of a Single Electron Transistor Based on a Silicon-on-Insulator |
SU Li-Na1,2, LV Li2, LI Xin-Xing2, QIN Hua2, GU Xiao-Feng1** |
1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 2Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
|
|
Cite this article: |
SU Li-Na, LV Li, LI Xin-Xing et al 2015 Chin. Phys. Lett. 32 047301 |
|
|
Abstract A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nanolithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50 nm in diameter is demonstrated to operate at temperatures up to 70 K. The charging energy of the Coulomb island is about 12.5 meV.
|
|
Received: 25 November 2014
Published: 30 April 2015
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.43.Jn
|
(Tunneling)
|
|
73.63.Kv
|
(Quantum dots)
|
|
|
|
|
[1] Zwanenburg F A, Dzurak A S, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 [2] Huang R, Song J, Guo Y Q, Wang X, Chen K J and Li W 2011 Acta Phys. Sin. 60 027301 (in Chinese) [3] Guo L, Leobandung E and Chou S Y 1997 Science 275 649 [4] Devoret M H and Schoelkopf R J 2000 Nature 406 1039 [5] Suter K, Akiyama T, de Rooij N F, Huefner M, Ihn T and Staufer U 2010 J. Microelectromech. Syst. 19 1088 [6] Yoo M J, Fulton T A, Hess H F, Willett R L, Dunkleberger L N, Chichester R J, Pfeiffer L N and West K W 1997 Science 276 579 [7] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238 [8] Phillips A H, Aly N A I, Kirah K and El-Sayes H E 2008 Chin. Phys. Lett. 25 250 [9] Fulton T and Dolan G 1987 Phys. Rev. Lett. 59 109 [10] Huang J, Chen K J, Fang Z H, Guo S H, Wang X, Ding H L, Li W and Huang X F 2009 Chin. Phys. Lett. 26 037301 [11] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356 [12] Koppinen P J, Stewart M D and Zimmerman N M 2013 IEEE Trans. Electron Devices 60 78 [13] Fujiwara A, Inokawa H, Yamazaki K, Namatsu H, Takahashi Y, Zimmerman N M and Martin S B 2006 Appl. Phys. Lett. 88 053121 [14] Zimmerman N M, Simonds B J, Fujiwara A, Ono Y, Takahashi Y and Inokawa H 2007 Appl. Phys. Lett. 90 033507 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|