ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse |
XIA Chang-Long, MIAO Xiang-Yang** |
College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
|
|
Cite this article: |
XIA Chang-Long, MIAO Xiang-Yang 2015 Chin. Phys. Lett. 32 043202 |
|
|
Abstract The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200 eV to 550 eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-60 as can be generated by superposing a bandwidth of 70 eV.
|
|
Received: 22 December 2014
Published: 30 April 2015
|
|
PACS: |
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
|
|
|
[1] Schoun S B, Chirla R, Wheeler J et al 2014 Phys. Rev. Lett. 112 153001 [2] Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601 [3] Wu Y and Yang X X 2007 Phys. Rev. A 76 013832 [4] Xiong H, Si L G, Lv X Y et al 2013 Opt. Lett. 38 353 [5] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [6] Drescher M, Hentschel M, Kienberger R et al 2002 Nature 419 803 [7] Goulielmakis E, Loh Z H, Wirth A et al 2010 Nature 466 739 [8] Feng X, Gilberston S, Mashiko H et al 2009 Phys. Rev. Lett. 103 183901 [9] Goulielmakis E, Schultze M, Hofsteter M et al 2008 Science 320 1614 [10] Pei Y N and Miao X Y 2014 Chin. Phys. Lett. 31 104202 [11] Lan P, Lu P, Li Q et al 2009 Phys. Rev. A 79 043413 [12] Du H C and Hu B T 2011 Phys. Rev. A 84 023817 [13] Zheng Y, Zeng Z, Li R et al 2012 Phys. Rev. A 85 023410 [14] Hong W, Lu P, Li Q et al 2009 Opt. Lett. 34 2102 [15] Jiao Z H, Wang G L, Li P C et al 2014 Phys. Rev. A 90 025401 [16] Kienberger R, Coulielmakis E, Uiberacker M et al 2004 Nature 427 817 [17] Abel M J, Pfeifer T, Nagel P M et al 2009 Chem. Phys. 366 9 [18] Chang Z 2005 Phys. Rev. A 71 023813 [19] Zhao S F, Zhou X X, Li P C et al 2008 Phys. Rev. A 78 063404 [20] Xia C L, Zhang G T, Wu J et al 2010 Phys. Rev. A 81 043420 [21] Chen J G, Zeng S L and Yang Y J 2010 Phys. Rev. A 82 043401 [22] Zhao K, Zhang Q, Chini M et al 2012 Opt. Lett. 37 3891 [23] Xia C L and Liu X S 2013 Phys. Rev. A 87 043406 [24] Liu C D and Nisoli M 2012 Phys. Rev. A 85 013418 [25] Ruiz C, Hoffmann D J, Torres R et al 2009 New J. Phys. 11 113045 [26] Du H C, Xue S, Wang H Q et al 2015 Opt. Commun. 338 422 [27] Hernández-García C, Pérez-Hernández J, Popmintchev T et al 2013 Phys. Rev. Lett. 111 033002 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|