Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 037401    DOI: 10.1088/0256-307X/32/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films
GOU Xiao-Fan**, ZHU Guang
College of Mechanics and Materials, Hohai University, Nanjing 210098
Cite this article:   
GOU Xiao-Fan, ZHU Guang 2015 Chin. Phys. Lett. 32 037401
Download: PDF(673KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The strain effect on the critical current is one of the most important properties for polycrystalline YBa2Cu3O7−δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr. By introducing the applied strain, a modified lattice model combining the strain and misorientation of grain boundaries (GBs) in the REBCO film is developed. A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain εr on the variation of the critical current with the applied strain are extensively investigated. Furthermore, by using the developed lattice model, the irreversible strain εirr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.

Published: 26 February 2015
PACS:  74.72.-h (Cuprate superconductors)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/037401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/037401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GOU Xiao-Fan
ZHU Guang

[1] Gou X and Shen Q 2012 Physica C 475 5
[2] Gou X and Schwartz J 2013 Supercond. Sci. Technol. 26 055016
[3] Schwartz J, Effio T, Liu X, Le Q V, Mbaruku A L, Schneider-Muntau H J, Shen T, Song H, Trociewitz U P, Wang X and Weijers H W 2008 IEEE Trans. Appl. Supercond. 18 70
[4] Miao H, Marken K R, Meinesz M, Czabaj B and Seung H 2005 IEEE Trans. Appl. Supercond. 15 2554
[5] Lu X F, Goodrich L F, van der Laan D C, Splett J D, Cheggour N, Holesinger T G and Baca F J 2012 IEEE Trans. Appl. Supercond. 22 8400307
[6] Yong H D, Xue F and Zhou Y H 2011 J. Appl. Phys. 110 033905
[7] van der Laan D C, Haugan T J and Barnes P N 2009 Phys. Rev. Lett. 103 027005
[8] Lee P J 2013 Engineering Critical Current Density versus Applied Field (Tallahassee, FL, USA: Applied Superconductiviity Center, National High Magnetic Field Laboratory, Florida State University)
[9] Thieme C L H, Fleshler E, Buczek D M, Jowett M, Fritzemeier L G, Arendt P N, Foltyn S R, Coulter J Y and Willis J O 1999 IEEE Trans. Appl. Supercond. 9 1494
[10] Cheggour N, Ekin J W, Clickner C C, Verebelyi D T, Thieme C L H, Feenstra R and Goyal A 2003 Appl. Phys. Lett. 83 4223
[11] Sugano M, Osamura K, Prusseit W, Semerad R, Itoh K and Kiyoshi T 2005 Supercond. Sci. Technol. 18 369
[12] Shin H S, Dizon J R C, Ko R K, Kim T H, Ha D W and Oh S S 2007 Physica C 463 736
[13] Shin H S, Kim K H, Dizon J R C, Kim T Y, Ko R K and Oh S S 2005 Supercond. Sci. Technol. 18 S364
[14] Cheggour N, Ekin J W, Thieme C L H, Xie Y Y, Selvamanickam V and Feenstra R 2005 Supercond. Sci. Technol. 18 S319
[15] van der Laan D C and Ekin J W 2007 Appl. Phys. Lett. 90 052506
[16] Klie R F, Buban J P, Varela M, Franceschetti A, Jooss C, Zhu Y, Browning N D, Pantelides S T and Pennycook S J 2005 Nature 435 475
[17] van der Laan D C, Haugan T J, Barnes P N, Abraimov D, Kametani F, Larbalestier D C and Rupich M W 2010 Supercond. Sci. Technol. 23 014004
[18] Dimos D, Chaudhari P, Mannhart J and LeGoues F K 1988 Phys. Rev. Lett. 61 219
[19] Hilgenkamp H and Mannhart J 1998 Appl. Phys. Lett. 73 265
[20] Verebelyi D T, Christen D K, Feenstra R, Cantoni C, Goyal A, Lee D F, Paranthaman M, Arendt P N, DePaula R F, Groves J R and Prouteau C 2000 Appl. Phys. Lett. 76 1755
[21] Zhu G and Gou X F 2005 The 12th International Conference of Numerical Analysis and Applied Mathematics (Rhodes, Greece 22–28 September 2014)
[22] Holzapfel B, Fernandez L, Schindler F, de Boer B, Reger N, Eickemeyer J, Berberich P and Prusseit W 2001 IEEE Trans. Appl. Supercond. 11 3872
[23] Rhyner J and Blatter G 1989 Phys. Rev. B 40 829
[24] Ford J M, Wheeler J and Movchan A B 2002 Acta Mater. 50 3941
[25] Rutter N A and Glowacki B A 2001 Supercond. Sci. Technol. 14 680
[26] Rutter N A, Glowacki B A and Evetts J E 2000 Supercond. Sci. Technol. 13 L25
[27] Goyal A, Paranthaman M P and Schoop U 2004 MRS Bull. 29 552
[28] Goyal A, Lee D F, List F A, Specht E D, Feenstra R, Paranthaman M, Cui X, Lu S W, Martin P M, Kroeger D M, Christen D K, Kang B W, Norton D P, Park C, Verebelyi D T, Thompson J R, Williams R K, Aytug T and Cantoni C 2001 Physica C 357 Part 2 903
[29] Shin H S, Kim K H, Dizon R, John C, Kim T Y, Ko R K and Oh S S 2005 Supercond. Sci. Technol. 18 S364
[30] Locquet J P, Perret J, Fompeyrine J, Machler E, Seo J W and Van Tendeloo G 1998 Nature 394 453
[31] Zhang Z, Chen W and Gou X 2014 J. Supercond. Novel Magn. 27 1387
[32] Sugano M, Shikimachi K, Hirano N and Nagaya S 2010 Supercond. Sci. Technol. 23 085013

Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 037401
[2] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 037401
[3] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 037401
[4] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 037401
[5] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 037401
[6] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 037401
[7] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 037401
[8] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 037401
[9] Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu, Xing-Jiang Zhou. A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method[J]. Chin. Phys. Lett., 2016, 33(06): 037401
[10] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 037401
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 037401
[12] XIA Feng-Jin, WU Hao, FU Yue-Ju, XU Bo, YUAN Jie, ZHU Bei-Yi, QIU Xiang-Gang, CAO Li-Xin, LI Jun-Jie, JIN Ai-Zi, WANG Yu-Mei, LI Fang-Hua, LIU Bao-Ting, XIE Zhong, ZHAO Bai-Ru. A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides[J]. Chin. Phys. Lett., 2012, 29(10): 037401
[13] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 037401
[14] Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. Chin. Phys. Lett., 2010, 27(8): 037401
[15] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 037401
Viewed
Full text


Abstract