Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 037102    DOI: 10.1088/0256-307X/32/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ideal Strengths and Bonding Properties of UO2 under Tension
LI Li1, WANG Bao-Tian1**, ZHANG Ping2
1Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
2LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
LI Li, WANG Bao-Tian, ZHANG Ping 2015 Chin. Phys. Lett. 32 037102
Download: PDF(759KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By performing density functional theory plus U calculations, we systematically study the structural, electronic, and magnetic properties of UO2 under uniaxial tensile strain. The results show that the ideal tensile strengths along the [100], [110], and [111] directions are 93.6, 27.7, and 16.4 GPa at strains of 0.44, 0.24, and 0.16, respectively. After electronic-structure investigation for tensile stain along the [001] direction, we find that the strong mixed ionic/covalent character of U–O bond is weakened by the tensile strain and there will occur an insulator to metal transition at strain over 0.30.
Published: 26 February 2015
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.mm (Fracture)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/037102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/037102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Li
WANG Bao-Tian
ZHANG Ping
[1] Schoenes J 1980 Phys. Rep. 63 301
[2] Idiri M, Bihan T L, Heathman S and Rebizant J 2004 Phys. Rev. B 70 014113
[3] Heathman S, Haire R G, Bihan T L and Lindbaum A 2005 Science 309 110
[4] Prodan I D, Scuseria G E and Martin R L 2007 Phys. Rev. B 76 033101
[5] Moore K T and Laan V G 2009 Rev. Mod. Phys. 81 235
[6] Petit L, Svane A, Szotek Z, Temmerman W M and Stocks G M 2010 Phys. Rev. B 81 045108
[7] Shi H, Chu M and Zhang P 2010 J. Nucl. Mater. 400 151
[8] Zhang P, Wang B T and Zhao X G 2010 Phys. Rev. B 82 144110
[9] An Y Q, Taylor A J, Conradson S D, Trugman S A, Durakiewicz T and Rodriguez G 2011 Phys. Rev. Lett. 106 207402
[10] Chen Q Y, Tan S Y, Lai X C and Chen J 2012 Chin. Phys. B 21 087801
[11] Ao B Y, Shi P, Guo Y and Gao T 2013 Chin. Phys. B 22 037103
[12] Wen X D, Martin R L, Henderson T M and Scuseria G E 2013 Chem. Rev. 113 1063
[13] Wen X D, Martin R L, Scuseria G E, Rudin S P and Batista E R 2013 J. Phys. Chem. C 117 13122
[14] Wang B T, Zhang P, Lizárraga R, Marco I D and Eriksson O 2013 Phys. Rev. B 88 104107
[15] Suzuki M T, Magnani N and Oppeneer P M 2013 Phys. Rev. B 88 195146
[16] Hoover M E, Atta-Fynn R and Ray A K 2014 J. Nucl. Mater. 452 479
[17] Amoretti G, Blaise A, Caciuffo R, Fournier J M, Hutchings M T, Osborn R and Taylor A D 1989 Phys. Rev. B 40 1856
[18] Caciuffo R, Magnani N, Santini P, Carretta S, Amoretti G, Blackburn E, Enderle M, Brown P J and Lander G H 2007 J. Magn. Magn. Mater. 310 1698
[19] Wilkins S B, Caciuffo R, Detlefs C, Rebizant J, Colineau E, Wastin F and Lander G H 2006 Phys. Rev. B 73 060406
[20] Veal B and Lam D 1974 Phys. Rev. B 10 4902
[21] Schoenes J 1978 J. Appl. Phys. 49 1463
[22] Yu S W, Tobin J G, Crowhurst J C, Sharma S, Dewhurst J K, Olalde-Velasco P, Yang W L and Siekhaus W J 2011 Phys. Rev. B 83 165102
[23] Hohenberg P 1964 Phys. Rev. 136 B864
[24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[25] Boettger C E and Ray A K 2002 Int. J. Quantum Chem. 90 1470
[26] Kudin K N, Scuseria G E and Martin R L 2002 Phys. Rev. Lett. 89 266402
[27] Yun Y, Kim H and Park K 2005 Nucl. Eng. Tech. 37 293
[28] Ceperley D M 1980 Phys. Rev. Lett. 45 566
[29] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Wang B T, Shi H, Li W D and Zhang P 2010 Phys. Rev. B 81 045119
[32] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[33] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[34] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[35] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[36] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[37] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[38] Yin Q and Savrasov S Y 2008 Phys. Rev. Lett. 100 225504
[39] Birch F 1947 Phys. Rev. B 71 809
[40] Andersson D A, Lezama J, Uberuaga B P, Deo C and Conradson S D 2009 Phys. Rev. B 79 024110
[41] Yamashita T, Nitani N, Tsuji T and Inagaki H 1997 J. Nucl. Mater. 247 90
[42] Zhang Y, Lu G H, Deng S H, Wang T M, Xu H B, Kohyama M and Yamamoto R 2007 Phys. Rev. B 75 174101
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Bl?chl P E 1994 Phys. Rev. B 50 17953
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[47] Nielsen O H and Martin R M 1985 Phys. Rev. B 32 3780
[48] Wang B T and Zhang P 2011 Chin. Phys. Lett. 28 047101
[49] Lu Y, Yang Y, Zheng F, Wang B T and Zhang P 2013 J. Nucl. Mater. 441 411
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 037102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 037102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 037102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 037102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 037102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 037102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 037102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 037102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 037102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 037102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 037102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 037102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 037102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 037102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 037102
Viewed
Full text


Abstract