Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 037101    DOI: 10.1088/0256-307X/32/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Density Functional Theory of Composite Fermions
ZHANG Yin-Han1, SHI Jun-Ren2,3**
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2International Center for Quantum Materials, Peking University, Beijing 100871
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
ZHANG Yin-Han, SHI Jun-Ren 2015 Chin. Phys. Lett. 32 037101
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We construct a density functional theory for two-dimensional electron (hole) gases subjected to both strong magnetic fields and external potentials. In particular, we are focused on regimes near even-denominator filling factors, in which the systems form composite fermion liquids. Our theory provides a systematic and rigorous approach to determine the properties of ground states in a fractional quantum Hall regime that is modified by artificial structures. We also propose a practical way to construct an approximated functional.

Published: 26 February 2015
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  73.43.-f (Quantum Hall effects)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/037101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/037101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yin-Han
SHI Jun-Ren

[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3] Polini M, Guinea F, Lewenstein M, Manoharan H C and Pellegrini V 2009 Nat. Nanotechnol. 4 625
[4] Evers W H, Goris B, Bals S, Casavola M, Graaf J D, Roij R V, Dijkstra M and Vanmaekelbergh D 2013 Nano Lett. 13 2317
[5] Zhang Y and Shi J 2014 Phys. Rev. Lett. 113 016801
[6] Vignale G and Rasolt M 1987 Phys. Rev. Lett. 59 2360
     Vignale G and Rasolt M 1988 Phys. Rev. B 37 10685
[7] Giuliani G F and Vignale G 2005 Quantum Theory of the Electron Liquid (Cambridge: Cambridge University Press) chap 7 p 390
[8] Heinonen O, Lubin M I and Johnson M J 1995 Phys. Rev. Lett. 75 4110
[9] Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press) chap 5 p 105
[10] Heinonen O 1998 Composite Fermions (Singapore: World Scientific)
[11] Kalmeyer V and Zhang S C 1992 Phys. Rev. B 46 9889
[12] Willett R L, Ruel R R, West K W and Pfeiffer L N 1993 Phys. Rev. Lett. 71 3846
[13] Halperin B I, Lee P A and Read N 1993 Phys. Rev. B 47 7312
[14] Shi J, Vignale G, Xiao D and Niu Q 2007 Phys. Rev. Lett. 99 197202

Related articles from Frontiers Journals
[1] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 037101
[2] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 037101
[3] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 037101
[4] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 037101
[5] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 037101
[6] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 037101
[7] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 037101
[8] PENG De-Jun, CHENG Fang, ZHOU Guang-Hui,. Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire[J]. Chin. Phys. Lett., 2007, 24(2): 037101
[9] CHENG Kuan, LIU Yu-Liang. Numerical Study of Luttinger Liquid Regime of Two-Leg Hubbard Ladders[J]. Chin. Phys. Lett., 2005, 22(9): 037101
[10] Z. Bentalha, M. Tahiri, B. Liani. One-Dimensional Anyon Lattice and slq(2) Algebra Realization[J]. Chin. Phys. Lett., 2005, 22(5): 037101
[11] GU Bo, LOU Ji-Zhong, QIN Shao-Jing, XIANG Tao,. Exciton Excitations in a One-Dimensional Band Insulator with Hubbard Interactions[J]. Chin. Phys. Lett., 2004, 21(3): 037101
Viewed
Full text


Abstract