CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Relaxation of 6H-SiC (0001) Surface and Si Adsorption on 6H-SiC (0001): an ab initio Study |
HE Xiao-Min1**, CHEN Zhi-Ming1, LI Lian-Bi1,2 |
1Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048 2School of Science, Xi'an Polytechnic University, Xi'an 710048
|
|
Cite this article: |
HE Xiao-Min, CHEN Zhi-Ming, LI Lian-Bi 2015 Chin. Phys. Lett. 32 036801 |
|
|
Abstract First-principles calculations are carried out to study the relaxation of 6H-SiC (0001) surface and chemisorption models of Si adatoms on four high-symmetry adsorption sites. The surface results show that Si-termination is the preferred termination of the 6H-SiC(0001) polar surface and is more stable than the C-terminated 6H-SiC(0001) polar surface over a wide range of allowed chemical potentials. Four stable atomic configurations (top, bridge, hcp and fcc) are considered, and the adsorption energies and geometries, Mulliken charge population, and partial density of state (PDOS) properties are analyzed. Adsorption energy results show that the top site is the most stable site. The structural properties of Si adsorption on the SiC (0001) surface shows that increasing stability means decreasing bond lengths. Charge populations analysis and PDOS results imply that there is strong interaction between Si adatoms and 6H-SiC (0001) surface.
|
|
Published: 26 February 2015
|
|
PACS: |
68.35.B-
|
(Structure of clean surfaces (and surface reconstruction))
|
|
68.35.Af
|
(Atomic scale friction)
|
|
68.35.bg
|
(Semiconductors)
|
|
|
|
|
[1] Zhu F, Chen Z M and Li L B 2009 Chin. Phys. B 18 4966 [2] Zang Y, Chen Z M, Li L B and Zhao S F 2009 IEEE Int. Conf. Electron. Devices Solid-State Circuits (Xi'an 25–27 November 2009) p 306 [3] Li L B, Chen Z M and Yang Y 2011 Mater. Lett. 65 1257 [4] Li L B, Chen Z M and Xie L F 2013 Mater. Lett. 93 330 [5] Xie L F, Chen Z M, Li L B, Yang C, He X M and Ye N 2012 Appl. Surf. Sci. 261 88 [6] Luo X F, Fang C, Li X, Lai W S, Sun L F and Liang T X 2013 Chin. Phys. Lett. 30 066801 [7] Zhao Y Y, Wang J Y, Xu J B, Yang F, Liu Q and Dai Y H 2014 J. Semicond. 35 042002 [8] Liu X B, Liu J P, Zhang Q M and Altounian Z 2014 Comput. Mater. Sci. 85 186 [9] Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y and Yuan 2014 Comput. Mater. Sci. 85 179 [10] Yao H and Che J G 2000 Acta Phys. Sin. 49 1747 (in Chinese) [11] Tang M S, Ma B X, Yao Q K and Jia Y 2002 Chin. Phys. B 11 58 [12] Payne M C, Teter M P and Allan D C 1992 Rev. Mod. Phys. 64 1045 [13] Vanderbilt D 1990 Phys. Rev. B 41 7892 [14] Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D and Car-Parrinello 1993 Phys. Rev. B 47 10142 [15] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [16] Jomard G, Petit T and Pasturel A 1999 Phys. Rev. B 59 4044 [17] Christensen A and Carter E A 1998 Phys. Rev. B 58 8050 [18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [19] Kohn W and L J 1965 Phys. Rev. 140 A1133 [20] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|