CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Electronic Structures and Adsorption of Li-Doped Graphenes for CO |
LIU Xiao-Juan1, CAO Wen-Qiang2,3, HUANG Zi-Han1, YUAN Jie3, FANG Xiao-Yong1, CAO Mao-Sheng1** |
1School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 2School of Life and Environmental Sciences, Minzu University of China, Beijing 100081 3Department of Physics, School of Sciences, Minzu University of China, Beijing 100081
|
|
Cite this article: |
LIU Xiao-Juan, CAO Wen-Qiang, HUANG Zi-Han et al 2015 Chin. Phys. Lett. 32 036802 |
|
|
Abstract We research the adsorption geometries and electronic structures of pristine graphene (p?GR) and Li?doped graphene (Li-GR) before and after CO adsorption by first-principles. The adsorption energies Ead of CO on p-GR and Li-GR are calculated. The results demonstrate that Ead of CO on Li-GR is from -3.3 eV to -3.5 eV, meanwhile Q is up to 0.13 e, which indicate that strong electrostatic attractions occur between CO and Li-GR, while CO is physically adsorbed on p-GR. The obvious accumulated charge in electron density difference and increasing carrier density suggest that the conductivity of Li-GR is improved considerably after CO adsorption. An adsorption mechanism is also proposed. Our results provide a path to achieving CO sensors with high performance.
|
|
Published: 26 February 2015
|
|
PACS: |
68.35.Af
|
(Atomic scale friction)
|
|
68.35.Ja
|
(Surface and interface dynamics and vibrations)
|
|
68.35.bg
|
(Semiconductors)
|
|
68.35.B-
|
(Structure of clean surfaces (and surface reconstruction))
|
|
|
|
|
[1] Wang T, Guo Q, Ao Z M, Liu Y, Wang W B, Sheng K and Yu B 2011 Chin. Phys. Lett. 28 117302 [2] Li M, Zhang J Y, Zhang Y, Zhang G F and Wang T M 2011 Appl. Surf. Sci. 257 10710 [3] Liu W B, Liu Y, Wang R G, Hao L F, Song D J and Li Z 2014 Phys. Status Solidi B 251 229 [4] Liu W B, Liu Y and Wang R G 2014 Appl. Surf. Sci. 296 204 [5] Yuan W H, Li B Q and Li L 2011 Appl. Surf. Sci. 257 10183 [6] Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 107306 [7] Wang Z G, Niu X Y, Xiao J, Wang C M, Liu J and Gao F 2013 RSC Adv. 3 16775 [8] Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y and Yuan J 2014 Comput. Mater. Sci. 85 179 [9] Liu T T, Shao G J, Ji M T and Ma Z P 2014 Ionics 20 145 [10] Liu S Y, Liu S Y, Li D J, Dang H L, Liu Y D, Xue S, Xue W H and Wang S W 2013 Phys. Rev. B 88 115434 [11] Wen B, Wang X X, Cao W Q, Shi H L, Lu M M, Wang G, Jin H B, Wang W Z, Yuan J and Cao M S 2014 Nanoscale 6 5754 [12] Liu S Y, Shang J X, Wang F H and Zhang Y 2009 Phys. Rev. B 79 075419 [13] Wang L, Shang J X, Wang F H, Chen Y and Zhang Y 2013 Acta Mater. 61 1726 [14] Wen B, Cao M S, Lu M M, Cao W Q, Shi H L, Liu J, Wang X X, Jin H B, Fang X Y, Wang W Z and Yuan J 2014 Adv. Mater. 26 3484 [15] Qin N, Liu S Y, Li Z, Zhao H and Wang S W 2011 J. Phys.: Condens. Matter 23 225501 [16] Chen J H, Liu E K, Qi X, Luo H Z, Wang W H, Zhang H W, Wang S G, Cai J W and Wu G H 2014 Comput. Mater. Sci. 89 130 [17] Huang J, Chen H J, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Chin. Phys. Lett. 30 017103 [18] Paulla K K, Hassan A J, Knick C R and Farajian A A 2014 RSC Adv. 4 2346 [19] Huang B, Li Z Y, Liu Z R, Zhou G, Hao S G, Wu J, Gu B L and Duan W H 2008 J. Phys. Chem. C 112 13442 [20] Jiang Q G, Ao Z M, Li S and Wen Z 2014 RSC Adv. 4 20290 [21] Leenaerts O, Partoens B and Peeters F M 2008 Phys. Rev. B 77 125416 [22] Lin X Q, Ni J and Fang C 2013 J. Appl. Phys. 113 034306 [23] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L and Peng Y 2009 Nanotechnology 20 185504 [24] Dai J Y, Yuan J M and Giannozzi P 2009 Appl. Phys. Lett. 95 232105 [25] Zhang H P, Luo X G, Lin X Y, Lu X, Leng Y and Song H T 2013 Appl. Surf. Sci. 283 559 [26] Wang J J, Fang X Y, Feng G Y, Song W L, Hou Z L, Jin H B, Yuan J and Cao M S 2010 Phys. Lett. A 374 2286 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|