Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 035202    DOI: 10.1088/0256-307X/32/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation
LI Xin-Xia1,2, XIANG Nong2**, GAN Chun-Yun2
1Department of Nuclear Physics, University of South China, Hengyang 421001
2Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
LI Xin-Xia, XIANG Nong, GAN Chun-Yun 2015 Chin. Phys. Lett. 32 035202
Download: PDF(752KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n||=2.1 or n||=2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n||=2.1 if a toroidal magnetic field BT=2.5 T is applied.
Published: 26 February 2015
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/035202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/035202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin-Xia
XIANG Nong
GAN Chun-Yun
[1] Fisch N J 1978 Phys. Rev. Lett. 41 873
[2] Brambilla M 1976 Nucl. Fusion 16 47
[3] Kim S H, Artaud J F, Basiuk V et al 2009 Plasma Phys. Control. Fusion 51 065020
[4] Sóldner F X and JET Team 1997 Plasma Phys. Control. Fusion 39 B353
[5] Wan B N, Li J G, Guo H Y, Liang Y F et al 2013 Nucl. Fusion 53 104006
[6] La Haye R J 2006 Phys. Plasmas 13 055501
[7] Bonoli P T and Englade R C 1986 Phys. Fluids 29 2937
[8] Li J G, Guo H Y, Wan B N, Gong X Z et al 2013 Nat. Phys. 9 817
[9] Xu G S, Wan B N, Li J G, Gong X Z et al 2011 Nucl. Fusion 51 072001
[10] Li M H, Ding B J, Zhang J Z, Gan K F et al 2014 Phys. Plasmas 21 062510
[11] Ignat D W, Valeo E J and Jardin S C 1994 Nucl. Fusion 34 837
[12] Ignat D W, Kaita R, Jardin S C and Okabayashi M 1996 Nucl. Fusion 36 1733
[13] Valeo E J and Eder D C 1987 J. Comput. Phys. 69 341
[14] Ignat D W 1981 Phys. Fluids 24 1110
[15] Stix T H 1992 Wave in Plasmas (New York: Springer-Verlag)
[16] Ding B J, Qin Y L, Li W K, Kong E H et al 2011 Phys. Plasmas 18 082510
[17] Xiang N and Yu G Y 1993 Acta Phys. Sin. 42 769 (in Chinese)
[18] Li G Q, Ren Q L, Qian J P, Lao L L et al 2013 Plasma Phys. Control. Fusion 55 125008
[19] Horton W, Goniche M, Peysson Y, Decker J et al 2013 Phys. Plasmas 20 112508
[20] Wesson J 2003 Tokamaks 3rd edn (Oxford: Oxford Science Publication)
[21] Ekedah A, Granucci G, Mailoux J, Petrzika V et al 2003 Phys. Plasmas 694 227
Related articles from Frontiers Journals
[1] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 035202
[2] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 035202
[3] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 035202
[4] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 035202
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 035202
[6] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 035202
[7] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 035202
[8] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 035202
[9] Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong, Bin Gui, EAST Team. Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation[J]. Chin. Phys. Lett., 2019, 36(4): 035202
[10] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 035202
[11] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 035202
[12] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 035202
[13] Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma[J]. Chin. Phys. Lett., 2017, 34(12): 035202
[14] Bo Shi, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, Hui Zhang, Jun-Li Qi, Xian-Zu Gong, Xiao-Dong Zhang, Wei-Hua Wang. Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI[J]. Chin. Phys. Lett., 2017, 34(9): 035202
[15] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 035202
Viewed
Full text


Abstract