Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 030301    DOI: 10.1088/0256-307X/32/3/030301
GENERAL |
A Phenomenon of Decoherence Induced by Chaotic Environment
YANG Yin-Biao, WANG Wen-Ge**
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
YANG Yin-Biao, WANG Wen-Ge 2015 Chin. Phys. Lett. 32 030301
Download: PDF(569KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By means of numerical simulation, we reveal a phenomenon which is due to decoherence induced by chaotic motion of a large environment. We study the possibility of replacing the environmental components of the state vector of the total system by some randomly-chosen vectors in the Hilbert space of the environment when decoherence has happened. It is shown that, in the future evolution, the reduced density matrices obtained in this way are quite close to those computed from the exact, continuous Schrödinger evolution of the total system. Similar results are also found in the case that the Hamiltonian is changed at the time of replacing components.

Published: 26 February 2015
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.-w (Quantum mechanics)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/030301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yin-Biao
WANG Wen-Ge

[1] Zeh H D 1970 Found. Phys. 1 69
     Zeh H 1973 Found. Phys. 3 109
[2] Zurek W H 2003 Rev. Mod. Phys. 75 715
[3] Joos E, Zeh H D, Kiefer C, Giulini D, Kupsch J and Stamatescu I O 2003 Decoherence and the Appearance of a Classical World in Quantum Theory 2nd edn (Berlin: Springer)
[4] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[5] Zurek W H 1981 Phys. Rev. D 24 1516
     Zurek W H 1982 Phys. Rev. D 26 1862
[6] Leggett A J 2002 J. Phys.: Condens. Matter 14 R415
     Leggett A J 2007 Prog. Theor. Phys. Suppl. 170 100
[7] Montina A 2006 Phys. Rev. Lett. 97 180401
[8] Kofler J and Brukner C 2007 Phys. Rev. Lett. 99 180403
     Kofler J and Brukner C 2008 Phys. Rev. Lett. 101 090403
[9] Gell-Mann M and Hartle J B 2012 Phys. Rev. A 85 062120
[10] Weinberg S 2012 Phys. Rev. A 85 062116
[11] Ghirardi G C and Romano R 2013 Phys. Rev. Lett. 110 170404
[12] Leifer M S and Maroney O J E 2013 Phys. Rev. Lett. 110 120401
[13] Blencowe M P 2013 Phys. Rev. Lett. 111 021302
[14] Bassi A, Dürr D and Hinrichs G 2013 Phys. Rev. Lett. 111 210401
[15] Adler S L 2003 Stud. Hist. Philos. Mod. Phys. 34 135
[16] Wang W G, He L W and Gong J B 2012 Phys. Rev. Lett. 108 070403
[17] Rossini D, Benenti G and Casati G 2006 Phys. Rev. E 74 036209
[18] Casati G and Chirikov B V 1994 Quantum Chaos: Between Order and Disorder (Cambridge: Cambridge University Press)
[19] Haake F 2001 Quantum Signatures of Chaos 2nd edn (Berlin: Springer-Verlag)
[20] Hannay J and Berry M V 1980 Physica D 1 267
[21] Casati G, Ford J, Guarneri I and Vivaldi F 1986 Phys. Rev. A 34 1413
[22] Frahm H and Mikeska H J 1988 Phys. Rev. Lett. 60 3
[23] Chirikov B V, Izrailev F M and Shepelyansky D 1988 Physica D 33 77
[24] Altland A 1993 Phys. Rev. Lett. 71 69
[25] Ford J, Mantica G and Ristow G H 1991 Physica D 50 493
[26] Bienert M, Haug F and Schleich W P 2002 Phys. Rev. Lett. 89 050403
[27] Lévi B, Georgeot B and Shepelyansky D L 2003 Phys. Rev. E 67 046220
[28] Gong J B and Wang J 2007 Phys. Rev. E 76 036217
[29] Wang J, Guarneri I, Casati G and Gong J B 2011 Phys. Rev. Lett. 107 234104
[30] He L W and Wang W G 2014 Phys. Rev. E 89 022125
[31] Gorin T, Prosen T, Seligman T H and Strunz W T 2004 Phys. Rev. A 70 042105

Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030301
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 030301
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 030301
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 030301
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 030301
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 030301
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 030301
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 030301
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 030301
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 030301
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 030301
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 030301
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 030301
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 030301
[15] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 030301
Viewed
Full text


Abstract