Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 030201    DOI: 10.1088/0256-307X/32/3/030201
GENERAL |
Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space
A. N. Ikot1**, H. P. Obong1, H. Hassanabadi2
1Theoretical Physics Group, Department of Physics, University of Port Harcourt, Choba PMB 5323, Nigeria
2Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Cite this article:   
A. N. Ikot, H. P. Obong, H. Hassanabadi 2015 Chin. Phys. Lett. 32 030201
Download: PDF(479KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-1/2 particles. The energy spectra and the eigenfunction are obtained in both cases. Special cases are also deduced.
Published: 26 February 2015
PACS:  02.40.Gh (Noncommutative geometry)  
  03.65.Pm (Relativistic wave equations)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/030201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. N. Ikot
H. P. Obong
H. Hassanabadi
[1] Hossenfelder S 2013 Living Rev. Relativ. 16 2
[2] Magglore M 1993 Phys. Lett. B 319 83
[3] Garay L J 1995 Int. J. Mod. Phys. A 10 145
[4] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407
[5] Magglore M 1993 Phys. Lett. B 304 65
[6] Scardigli F 1999 Phys. Lett. B 452 39
[7] Bambi C and Urban F R 2008 Class. Quantum Grav. 25 095006
[8] Amelino-Camelia G 2001 Phys. Lett. B 510 255
[9] Quesne C and Tkacuk V M 2007 SIGMA 3 016
[10] Ran Y, Xue L, Hu S and Su R K 2000 J. Phys. A 33 9265
[11] Nozari K 2006 Gen. Relativ. Gravit. 38 735
[12] Hassanabadi H, Zarrinkamar S and Rajabi A A 2013 Phys. Lett. B 718 1111
[13] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2013 Eur. Phys. J. Plus 128 25
[14] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2014 Few Body Syst. 55 255
[15] Hassanabadi H, Zarrinkamar S and Maghsoodi E 2013 Int. J. Mod. Phys. A 28 1350041
[16] Brau R and Buisseret F 2006 Phys. Rev. D 74 036002
[17] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125027
[18] Kempf A, Mangona G and Mann R B 1995 Phys. Rev. D 52 1108
[19] Konishi K, Paffuti G and Provero P 1990 Phys. Lett. B 234 0276
[20] Hassanabadi H, Maghsoodi E, Ikot A N and Zarrinkamar S 2013 Adv. High Energy Phys. 2013 923686
[21] Ikot A N, Yazarloo B H, Zarrinkamar S and Hassanabadi H 2014 Eur. Phys. J. Plus 129 79
[22] Yi Y, Kang L, W J Hua and C C Yi 2010 Chin. Phys. C 34 543
[23] Witten E 1996 Nucl. Phys. B 460 335
[24] Magglore M 1994 Phys. Rev. D 49 5182
[25] Cortes J L and Gamboa J 2005 Phys. Rev. D 71 026010
[26] Ali A F, Das S and Vagenas E C 2011 Phys. Rev. D 84 044013
[27] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301
[28] Chargui Y, Chetouani L and Trabelsi A 2010 Commun. Theor. Phys. 53 231
[29] Ikot A N, Hassanabdi H, Maghsoodi E and Zarrinkamar S 2014 Commun. Theor. Phys. 61 436
[30] Hassanabdi H, Derakhshani Z, Sahehi N and Zarrinkamar S 2014 Eur. Phys. J. Plus 129 43
[31] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[32] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
Related articles from Frontiers Journals
[1] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 030201
[2] DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 030201
[3] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 030201
[4] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 030201
[5] YU Xiao-Min, LI Kang. Non-Commutative Fock--Darwin System and Magnetic Field Limits[J]. Chin. Phys. Lett., 2008, 25(6): 030201
[6] WANG Jian-Hua, LI Kang,. He--McKellar--Wilkens Effect in Noncommutative Space[J]. Chin. Phys. Lett., 2007, 24(1): 030201
[7] S. A. Alavi. General Noncommuting Curvilinear Coordinates and Fluid Mechanics[J]. Chin. Phys. Lett., 2006, 23(10): 030201
[8] XIONG Chuan-Hua. Noncommutativity in Haldane’s Model[J]. Chin. Phys. Lett., 2003, 20(10): 030201
[9] S. A. Alavi. One-Dimensional Potentials in q Space[J]. Chin. Phys. Lett., 2003, 20(1): 030201
Viewed
Full text


Abstract