PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
A Transmission-Type Electrically Tunable Polarizer Based on Graphene Ribbons at Terahertz Wave Band |
TANG Yi-Cheng1, ZHU Zhi-Hong1,2**, ZHANG Jian-Fa1, GUO Chu-Cai1, LIU Ken1, YUAN Xiao-Dong1, QIN Shi-Qiao1,2 |
1College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
|
|
Cite this article: |
TANG Yi-Cheng, ZHU Zhi-Hong, ZHANG Jian-Fa et al 2015 Chin. Phys. Lett. 32 025202 |
|
|
Abstract We theoretically and numerically demonstrate that a transmission-type electrically tunable polarizer can be realized by using graphene ribbons supported on a dielectric film with a graphene sheet behind. The polarization mechanism originates from the antenna plasmon resonance of graphene stripes. The results of full-wave numerical simulations reveal that transmittance of 0.70 for one polarization and 0.0073 for another polarization can be obtained at normal incidence. The transmission-type electrically tunable polarizer provides and facilitates a variety of applications, including filtering, detecting, and imaging.
|
|
Published: 20 January 2015
|
|
PACS: |
52.40.Db
|
(Electromagnetic (nonlaser) radiation interactions with plasma)
|
|
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
|
|
|
[1] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908 [2] Rogacheva A V, Fedotov V A, Schwanecke A S and Zheludev N I 2006 Phys. Rev. Lett. 97 177401 [3] Plum E, Liu X X, Fedotov V A, Chen Y, Tsai D P and Zheludev N I 2009 Phys. Rev. Lett. 102 113902 [4] Zhu Z H, Ye W M, Ji J R, Yuan X D and Zen C 2007 Appl. Phys. B 86 327 [5] Zhu Z H, Guo C C, Liu K, Ye W M, Yuan X D, Yang B and Ma T 2012 Opt. Lett. 37 698 [6] Gordon R, Brolo A G, McKinnon A, Rajora A, Leathem B and Kavanagh K L 2004 Phys. Rev. Lett. 92 037401 [7] Zhu Z H, Liu H, Wang S M, Ye W M, Yuan X D and Zhu S N 2010 Opt. Lett. 35 754 [8] Drezet A, Genet C and Ebbesen T W 2008 Phys. Rev. Lett. 101 043902 [9] Zhu Z H, Liu H, Wang S M, Li T, Cao J X, Ye W M, Yuan X D and Zhu S N 2009 Appl. Phys. Lett. 94 103106 [10] Freitag M, Low T, Xia F and Avouris P 2012 Nat. Photon. 7 53 [11] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 [12] Sensale-Rodriguez B, Yan R and Kelly M 2012 Nat. Commun. 3 780 [13] Lee S H et al 2012 Nat. Mater. 11 936 [14] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotechnol.ogy 7 330 [15] Thongrattanasiri S, Koppens F and Gar? ?ade Abajo F 2012 Phys. Rev. Lett. 108 047401 [16] Andryieuski A and Lavrinenko A V 2013 Opt. Express 21 9144 [17] Sensale-Rodriguez B et al 2012 Nano Lett. 12 4518 [18] Nikitin A Y, Guinea F and Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119 [19] Nikitin A, Guinea F, Garcia-Vidal F and Martin-Moreno L 2012 Phys. Rev. B 85 081405 [20] Zhang J F, Guo C C, Liu K, Zhu Z H, Ye W M, Yuan X D and Qin S Q 2014 Opt. Express 22 12524 [21] Xu B Z, Gu C Q, Li Z and Niu Z Y 2013 Opt. Express 21 23803 [22] Amin M, Farhat M and B?c? H 2013 Opt. Express 21 29938 [23] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 [24] Vakil A and Engheta N 2011 Science 332 1291 [25] Emani N K, Chung T F, Ni X, Kildishev A V, Chen Y P and Boltasseva A 2012 Nano Lett. 12 5202 [26] Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lin Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411 [27] Zhu Z H, Guo C C, Liu K, Zhang J F, Ye W M, Yuan X D and Qin S Q 2014 Appl. Phys. A 114 1017 [28] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410 [29] Kaipa C S R, Yakovlev A B, Hanson G W, Padooru Y R, Medina F and Mesa F 2012 Phys. Rev. B 85 245407 [30] Gao W L, Shu J, Qiu C Y and Xu Q F 2012 ACS Nano 6 7806 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|