CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First Principles Study on Mechanical Properties of Superhard α-Ga Boron |
XU Yuan-Hui1, LIU Hui-Yun2, HAO Xian-Feng1, CHEN Rong-Na1, GAO Fa-Ming1** |
1Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 2Department of Computer Technology, Hebei College of Industry and Technology, Shijiazhuang 050090
|
|
Cite this article: |
XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng et al 2015 Chin. Phys. Lett. 32 026101 |
|
|
Abstract The mechanical properties and intrinsic hardness of the α-Ga boron phase (α-Ga-B) are studied by using the combination of first-principles calculations and a semiempirical macroscopic hardness model. It is found that α-Ga-B is mechanically stable and possesses higher bulk/shear modulus as compared with γ-B28, a newly discovered high-pressure boron phase. The theoretical hardness of α-Ga-B is estimated to be 45 GPa, which is much higher than 38 GPa for γ-B28. The results strongly indicate that α-Ga-B is a potential superhard boron phase. To further obtain insight into the superhard nature of α-Ga-B, we simulate stress–strain curves under tensile and shear deformation. Meanwhile, the microscopic mechanism driving the tensile and shear deformation modes in α-Ga-B is discussed in detail.
|
|
Published: 20 January 2015
|
|
PACS: |
61.50.Lt
|
(Crystal binding; cohesive energy)
|
|
62.20.Qp
|
(Friction, tribology, and hardness)
|
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
|
|
|
[1] Ramaseshan S 1946 Proc. Indian Acad. Sci. A 24 114 [2] Bundy F R and Wentorg R H Jr 1963 J. Chem. Phys. 38 1144 [3] Gao F M 2011 Chin. Phys. Lett. 28 076102 [4] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385 [5] Li W K, Zhou G D and Mak T C W 2008 Advanced Structural Inorganic Chemistry (Oxford: Oxford University Press) [6] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863 [7] Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N et al 2009 Phys. Rev. Lett. 102 185501 [8] Solozhenko V L, Kurakevych O O and Oganov A R 2008 J. Superhard Mater. 30 428 [9] Zhou W, Sun H and Chen C F 2010 Phys. Rev. Lett. 105 215503 [10] H ?ussermann U, Simak S I, Ahuja R and Johansson B 2003 Phys. Rev. Lett. 90 065701 [11] Ma Y, Tse J S, Klug D D and Ahuja R 2004 Phys. Rev. B 70 214107 [12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 [13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [14] Vanderbilt D 1990 Phys. Rev. B 41 7892 [15] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [16] Pfrommer B G, C?té M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233 [17] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) [18] Hill R 1952 Proc. Phys. Soc. London 65 350 [19] Jiang C, Lin Z, Zhang J Z and Zhao Y S 2009 Appl. Phys. Lett. 94 191906 [20] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502 [21] Gao F M, Hou L and He Y H 2004 J. Phys. Chem. B 108 13069 [22] H ?ussermann U and Mikhaylushkin A S 2010 Inorg. Chem. 49 11270 [23] Chen X, Niu H, Li D and Li Y 2011 Intermetallics 19 1275 [24] Roundy D, Krenn C R, Cohen M L and Morris J W Jr 1999 Phys. Rev. Lett. 82 2713 [25] Jhi S H, Louie S G, Cohen M L and Morris J W Jr 2001 Phys. Rev. Lett. 87 075503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|