Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 127302    DOI: 10.1088/0256-307X/32/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electrical-Controlled Transport for Surface States in a Dirac Semimetal Quantum Wire
XIAO Xian-Bo1**, LIU Zheng-Fang2, HE Yang-Ming1, LI Hui-Li1, AI Guo-Ping1, DU Yan1
1School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004
2School of Basic Science, East China Jiaotong University, Nanchang 330013
Cite this article:   
XIAO Xian-Bo, LIU Zheng-Fang, HE Yang-Ming et al  2015 Chin. Phys. Lett. 32 127302
Download: PDF(881KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transport properties of a Dirac semimetal quantum wire with two side gates are theoretically studied by adopting the lattice Green function method. It is found that a residual conductance quantum contributed from the surface states can be switched on or off by tuning the electron energy or the side gates voltage. This ideal switching effect for the surface Dirac electron results from the transversal quantum confinement of the quantum wire in combination with the electrostatic potential induced by the side gates. These findings may provide useful guidance for designing all-electrical topological nanoelectronic devices.
Received: 22 June 2015      Published: 05 January 2016
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Hb (Quantum wires)  
  73.23.Ad (Ballistic transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/127302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/127302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Xian-Bo
LIU Zheng-Fang
HE Yang-Ming
LI Hui-Li
AI Guo-Ping
DU Yan
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
[4] Linder J, Yokoyama T and Sudb? A 2009 Phys. Rev. B 80 205401
[5] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[6] Lu H Z, Shan W Y, Yao W, Niu Q and Shen S Q 2010 Phys. Rev. B 81 115407
[7] Liu C X, Zhang H J, Yan B H, Qi X L, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 81 041307
[8] Imura K I, Okamoto M, Yoshimura Y, Takane Y and Ohtsuki T 2012 Phys. Rev. B 86 245436
[9] Cheng Z, Chen R and Zhou B 2015 Chin. Phys. B 24 067304
[10] Str?m A and Johannesson H 2009 Phys. Rev. Lett. 102 096806
[11] Zhang L B, Cheng F, Zhai F and Chang K 2011 Phys. Rev. B 83 081402(R)
[12] Dolcini F 2011 Phys. Rev. B 83 165304
[13] Krueckl V and Richter K 2011 Phys. Rev. Lett. 107 086803
[14] Liu G H, Zhou G H and Chen Y H 2011 Appl. Phys. Lett. 99 222111
[15] Romeo F, Citro R, Ferraro D and Sassetti M 2012 Phys. Rev. B 86 165418
[16] Fu H H, Gao J H and Yao K L 2014 Nanotechnology 25 225201
[17] Murakami S 2007 New J. Phys. 9 356
[18] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[19] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[20] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[21] Wang Z J, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[22] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[23] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[24] Zhang Y, Liu Z K, Zhou B, Kim Y, Hussain Z, Shen Z X, Chen Y L and Mo S K 2014 Appl. Phys. Lett. 105 031901
[25] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, B?chner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
[26] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T Y, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
[27] Yi H M, Wang Z J, Chen C Y, Shi Y G, Feng Y, Liang A J, Xie Z J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Nakatake M, Arita M, Shimada K, Namatame M, Taniguchi M, Xu Z Y, Chen C T, Dai X, Fang Z and Zhou X J 2014 Sci. Rep. 4 6106
[28] Jiang H, Qiao Z H, Liu H W and Niu Q 2012 Phys. Rev. B 85 045445
[29] Wang Z B, Song J T, Liu H W, Jiang H and Xie X C 2015 arXiv:1503.07293[cond-mat.mes-hall]
[30] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
[31] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[32] Liu Y W, Zhang C, Yuan X, Lei T, Wang C, He L, Che R C and Xiu F X 2014 arXiv:1412.4380[cond-mat.mtrl-sci]
[33] Zhang E Z, Liu Y W, Wang W Y, Zhang C, Zhou P, Chen Z G, Zou J and Xiu F X 2015 ACS Nano 9 8843
[34] Ando T 1991 Phys. Rev. B 44 8017
[35] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[36] Pareek T P and Bruno P 2001 Phys. Rev. B 63 165424
[37] Chang K and Lou W K 2011 Phys. Rev. Lett. 106 206802
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 127302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 127302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 127302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 127302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 127302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 127302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 127302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 127302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 127302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 127302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 127302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 127302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 127302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 127302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 127302
Viewed
Full text


Abstract