Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 125202    DOI: 10.1088/0256-307X/32/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma
SUN Xin-Feng, JIANG Zhong-He**, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
SUN Xin-Feng, JIANG Zhong-He, XU Tao et al  2015 Chin. Phys. Lett. 32 125202
Download: PDF(773KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Three-wave resonant parametric decay instability of extraordinary wave decay into two upper hybrid waves in an inhomogeneous plasma is studied theoretically. Analytical expressions of the local absolute growth rate, convective amplification factor and threshold intensity are obtained. The calculated results show that the effects of magnetic field and ky (ky is the component of the wavenumber of upper hybrid wave perpendicular to pump wave k0) on the growth rate, amplification factor and threshold intensity are extremely dependent on their strength. The absolute growth rate and convective amplification factor increase with the plasma density while the threshold decreases. Moreover, the expression indicates that the inhomogeneity scale length of density and linear damping will reduce the convective amplification factor.
Received: 01 July 2015      Published: 05 January 2016
PACS:  52.25.Xz (Magnetized plasmas)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/125202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/125202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Xin-Feng
JIANG Zhong-He
XU Tao
HU Xi-Wei
ZHUANG Ge
WANG Lu
WANG Xiao-Hong
[1] Ebrahim N A, Baldis H A, Joshi C and Benesch R 1980 Phys. Rev. Lett. 45 1179
[2] Phillion D W, Campbell E M, Estabrook K G, Phillips G E and Ze F 1982 Phys. Rev. Lett. 49 1405
[3] Jackson E A 1967 Phys. Rev. 153 235
[4] Rosenbluth M N 1972 Phys. Rev. Lett. 29 565
[5] Liu C S and Rosenbluth M N 1976 Phys. Fluids 19 967
[6] Liu C S, Rosenbluth M N and White R B 1974 Phys. Fluids 17 1121
[7] Lee Y C and Kaw P K 1974 Phys. Rev. Lett. 32 135
[8] Schuss J J 1977 Phys. Fluids 20 1121
[9] Langdon A B, Lasinski B F and Kruer W L 1979 Phys. Rev. Lett. 43 133
[10] Peyser T A, Manka C K, Obenschain S P and Kearney K J 1991 Phys. Fluids B 3 1479
[11] Nicholson D R 1984 Phys. Fluids 27 650
[12] Barr H C, Boyd M T J, Gardner L R T and Rankin R 1984 Phys. Fluids 27 2730
[13] Laham N M, Al-khateeb A M, Al Nasser A S and Odeh I M 2000 Phys. Plasmas 7 3993
[14] Gusakov E Z and Popov A Yu 2012 39th EPS Conf. & 16th Int. Congress on Plasma Phys. P2 014
[15] Yan R, Maximov A V and Ren C 2010 Phys. Plasmas 17 052701
[16] Yan R, Maximov A V, Ren C and Tsung F S 2009 Phys. Rev. Lett. 103 175002
[17] Wei W, Ding B J, Zhang X J, Wang X J, Li M H, Kong E H and Zhang L 2014 Chin. Phys. B 23 055201
[18] Wang Z T, Long Y X and Dong J Q and He Z H 2013 Chin. Phys. B 22 095201
[19] Zhang Y P, Yang J W, Liu Y, Song X Y, Yuan G L, Li X at al 2009 Chin. Phys. B 18 5385
Related articles from Frontiers Journals
[1] Wei Chen and Zheng-Xiong Wang. Energetic Particles in Magnetic Confinement Fusion Plasmas[J]. Chin. Phys. Lett., 2020, 37(12): 125202
[2] Chao Dong, Ding Li, Chang Jiang. Electron-Electron Collision Term Describing the Reflections Induced Scattering in a Magnetized Plasma[J]. Chin. Phys. Lett., 2019, 36(7): 125202
[3] Lu-Lu Li, Yue-Song Jia, Qi-Zhi Sun, Wei Liu, Zheng-Fen Liu, Wei-Dong Qin, Jun Li, Yuan Chi, Xian-Jun Yang. Formation Process of Magnetized Fusion Target on the YingGuang 1 Device[J]. Chin. Phys. Lett., 2016, 33(04): 125202
[4] ZOU Xiu**, LIU Hui-Ping, QIU Ming-Hui, SUN Xiao-Hang . Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(12): 125202
[5] XU Yan-Xia, DUAN Wen-Shan** . Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2011, 28(12): 125202
[6] SUN Yun-Jin, FU Ya-Bo, CHEN Qiang, ZHANG Chun-Mei, SANG Li-Jun, ZHANG Yue-Fei. Silicon Dioxide Coating Deposited by PDPs on PET Films and Influence on Oxygen Transmission Rate[J]. Chin. Phys. Lett., 2008, 25(5): 125202
[7] ZOU Xiu. Characteristics of Dust Plasma Sheath in an Oblique Magnetic Field[J]. Chin. Phys. Lett., 2006, 23(2): 125202
[8] M. Ansar Mahmood, S. Mahmood, Arshad M. Mirza, H. Saleem,. Low Frequency Solitary Waves in Magnetized Electron--Positron--Ion Plasmas[J]. Chin. Phys. Lett., 2005, 22(3): 125202
[9] ZOU Xiu, LIU Jin-Yuan, WANG Zheng-Xiong, GONG Ye, LIU Yue, WANG Xiao-Gang. Electronegative Plasma Sheath Structure in a Magnetic Field[J]. Chin. Phys. Lett., 2004, 21(8): 125202
[10] ZHANG Peng-Yun, WANG Long . Effects of Magnetic Shear on Current Penetration in a Tokamak[J]. Chin. Phys. Lett., 2001, 18(6): 125202
Viewed
Full text


Abstract