Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 124305    DOI: 10.1088/0256-307X/32/12/124305
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube
DENG Ming-Xi**, GAO Guang-Jian, LI Ming-Liang
Department of Physics, Logistics Engineering University, Chongqing 401331
Cite this article:   
DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang 2015 Chin. Phys. Lett. 32 124305
Download: PDF(649KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle.
Received: 19 September 2015      Published: 05 January 2016
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/124305       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/124305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Ming-Xi
GAO Guang-Jian
LI Ming-Liang
[1] Rose L 2002 J. Press. Vessel. Technol. 124 273
[2] Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902
[3] Bermes C, Kim J Y, Qu J M and Jacobs L J 2007 Appl. Phys. Lett. 90 021901
[4] Pruell C, Kim J Y, Jacobs L J and Qu J M 2009 Smart Mater. Struct. 18 035003
[5] Xiang Y X, Xuan F Z and Deng M X 2010 Chin. Phys. Lett. 27 016202
[6] Xiang Y X, Deng M X, Xuan F Z, Chen H and Chen D Y 2012 Chin. Phys. Lett. 29 106202
[7] Li W B, Cho Y and Achenbach J D 2012 Smart Mater. Struct. 21 085019
[8] Xiang Y X, Deng M X, Liu C J and Xuan F Z 2015 J. Appl. Phys. 117 214903
[9] Chillara V K and Lissenden C J 2015 Opt. Eng. 55 011002
[10] Deng M X 1999 J. Appl. Phys. 85 3051
[11] de Lima W J N 2000 PhD Dissertation (Austin: University of Texas)
[12] Deng M X 2002 PhD Dissertation (Shanghai: Tongji University) (in Chinese)
[13] Deng M X 2003 J. Appl. Phys. 94 4152
[14] de Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819
[15] Deng M X, Wang P and Lv X F 2005 Appl. Phys. Lett. 86 124104
[16] Deng M X, Wang P and Lv X F 2005 J. Phys. D: Appl. Phys. 38 344
[17] Chillara V K and Lissenden C J 2013 Ultrasonics 53 862
[18] Liu Y, Lissenden C J and Rose J L 2014 J. Appl. Phys. 115 214901
[19] Valle C, Qu J M and Jacobs L J 1999 Int. J. Eng. Sci. 37 1369
[20] Gao G J, Deng M X and Li M L 2015 Acta Phys. Sin. 64 184303 (in Chinese)
[21] Deng M X, Xiang Y X and Liu L B 2011 Chin. Phys. Lett. 28 074301
[22] Deng M X, Xiang Y X and Liu L B 2011 J. Appl. Phys. 109 113525
[23] Ritec Advanced Measurement System Model SNAP-0.25-7 Operation Manual 2000, Ritec Inc., Warwick, USA
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 124305
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 124305
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 124305
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 124305
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 124305
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 124305
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 124305
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 124305
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 124305
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 124305
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 124305
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 124305
[13] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 124305
[14] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 124305
[15] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 124305
Viewed
Full text


Abstract