Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 121203    DOI: 10.1088/0256-307X/32/12/121203
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics
XU Shu-Sheng1,5, SHI Yuan-Mei1,2, YANG You-Chang1,3, CUI Zhu-Fang1,5, ZONG Hong-Shi1,4,5**
1Department of Physics, Nanjing University, Nanjing 210093
2Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171
3School of Physics and Mechanical-Electrical Engineering, Zunyi Normal College, Zunyi 563002
4Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
5State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang et al  2015 Chin. Phys. Lett. 32 121203
Download: PDF(679KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is commonly accepted that the system undergoes a crossover at high temperature and low chemical potential beyond the chiral limit case, and the properties of the crossover region are important for researchers to understand the nature of strong interacting matters of quantum chromodynamics (QCD). Since at present there is no exact order of parameters of the phase transitions beyond the chiral limit, QCD susceptibilities are widely used as indicators. In this work various susceptibilities are discussed in the framework of Dyson–Schwinger equations. The results show that different kinds of susceptibilities give the same critical end point, which is the bifurcation point of the crossover region and the first order phase transition line of QCD. Nevertheless, different pseudo-critical points are found in the temperature axis. We think that defining a critical band is more suitable in the crossover region.

Received: 15 August 2015      Published: 05 January 2016
PACS:  12.39.-x (Phenomenological quark models)  
  12.39.Fe (Chiral Lagrangians)  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/121203       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/121203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Shu-Sheng
SHI Yuan-Mei
YANG You-Chang
CUI Zhu-Fang
ZONG Hong-Shi

[1] Asakawa M and Hatsuda T 2004 Phys. Rev. Lett. 92 012001
[2] Vogl U and Weise W 1991 Prog. Part. Nucl. Phys. 27 195
[3] Klevansky S P 1992 Rev. Mod. Phys. 64 649
[4] Hatsuda T and Kunihiro T 1994 Phys. Rep. 247 221
[5] Buballa M 2005 Phys. Rep. 407 205
[6] Cui Z F et al 2013 Eur. Phys. J. C 73 2612
     Cui Z F, Shi C, Sun W M, Wang Y L and Zong H S 2014 Eur. Phys. J. C 74 2782
[7] Shi S, Yang Y C, Xia Y H, Cui Z F, Liu X J and Zong H S 2015 Phys. Rev. D 91 036006
[8] Kohyama H, Kimura D and Inagaki T 2015 Nucl. Phys. B 896 682
[9] Reinders L J, Rubinstein H and Yazaki S 1985 Phys. Rep. 127 1
[10] King I and Sachrajda C T 1987 Nucl. Phys. B 279 785
[11] Hatsuda T and Lee S H 1992 Phys. Rev. C 46 R34
[12] Klingl F, Kaiser N and Weise W 1997 Nucl. Phys. A 624 527
[13] Borsanyi S et al 2010 J. High Energy Phys. 1009 073
[14] Ejiri S and Yamada N 2013 Phys. Rev. Lett. 110 172001
[15] Forcrand P D, Langelage J, Philipsen O and Unger W 2014 Phys. Rev. Lett. 113 152002
[16] Braguta V V, Goy V A, Ilgenfritz E M, Kotov A Y, Molochkov A V, Muller-Preussker M and Petersson B 2015 J. High Energy Phys. 1506 094
[17] Endrodi G 2015 J. High Energy Phys. 1507 173
[18] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477
       Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1
[19] Alkofer R and Smekal L V 2001 Phys. Rep. 353 281
[20] Jiang Y, Chen H, Sun W M and Zong H S 2013 J. High Energy Phys. 1304 14
       Shi C, Wang Y L, Jiang Y, Cui Z F and Zong H S 2014 {\it J. High Energy Phys.} {1407} 14
[21] Cloet I C and Roberts C D 2014 Prog. Part. Nucl. Phys. 77 1
[22] Gutierrez E, Ahmad A, Ayala A, Bashir A and Raya A 2014 J. Phys. G 41 075002
[23] Zhao A M, Cui Z F, Jiang Y and Zong H S 2014 Phys. Rev. D 90 114031
[24] Wang B, Wang Y L, Cui Z F and Zong H S 2015 Phys. Rev. D 91 034017
       Xu S S, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Phys. Rev. D 91 056003
[25] Zhu H X, Sun W M and Zong H S 2013 Chin. Phys. Lett. 30 051201
[26] Tian Y L, Cui Z F, Wang B, Shi Y M, Yang Y C and Zong H S 2015 Chin. Phys. Lett. 32 081101
[27] Jiang Y, Hou F Y, Luo C B and Zong H S 2015 Chin. Phys. Lett. 32 021201
[28] Zong H S, Hou F Y, Sun W M, Ping J L and Zhao E G 2005 Phys. Rev. C 72 035202
[29] Zong H S, Shi Y M, Sun W M and Ping J L 2006 Phys. Rev. C 73 035206
[30] Shi Y M, Wu K P, Sun W M, Zong H S and Ping J L 2006 Phys. Lett. B 639 248
[31] Chang L, Liu Y X, Sun W M and Zong H S 2008 Phys. Lett. B 669 327
[32] Chang L, Liu Y X, Roberts C D, Shi Y M, Sun W M and Zong H S 2009 Phys. Rev. C 79 035209
[33] Cui Z F, Hou F Y, Shi Y M, Wang Y L and Zong H S 2015 Ann. Phys. (N. Y.) 358 172
[34] Qin S X, Chang L, Chen H, Liu Y X and Roberts C D 2011 Phys. Rev. Lett. 106 172301
[35] Maris P and Roberts C D 1997 Phys. Rev. C 56 3369
[36] Borsanyi S, Fodor Z, Hoelbling C, Katz S D, Krieg S, Ratti C and Szabo K K 2010 J. High Energy Phys. 1009 73
[37] Du Y L, Cui Z F, Xia Y H and Zong H S 2013 Phys. Rev. D 88 114019

Related articles from Frontiers Journals
[1] Zhenyu Zhang, Rui Ma, Jifeng Hu, and Qian Wang. Approach the Gell-Mann–Okubo Formula with Machine Learning[J]. Chin. Phys. Lett., 2022, 39(11): 121203
[2] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 121203
[3] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 121203
[4] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 121203
[5] XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun. Finite Size Effect on the in-Medium Chiral Condensate at Finite Density[J]. Chin. Phys. Lett., 2014, 31(04): 121203
[6] LI Chuan, JIANG Shao-Zhou, WANG Qing. Minimal Ward–Takahashi Vertices and Light Cone Pion Distribution Amplitudes from the GND Quark Model[J]. Chin. Phys. Lett., 2013, 30(8): 121203
[7] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 121203
[8] Krishna Kingkar Pathak**, D. K. Choudhury . The Oscillation Frequency of B and [J]. Chin. Phys. Lett., 2011, 28(10): 121203
[9] ZHAO Qiao-Yan, ZHANG Dan**, ZHANG Qiu-Yang . A Primary Study of Heavy Baryons ΛQ, ΣQ, ΞQ and ΩQ[J]. Chin. Phys. Lett., 2011, 28(7): 121203
[10] LI Quan, PANG Hou-Rong, PING Jia-Lun. Non-Strange Baryon Spectra and Confinement in the Constituent Quark Model[J]. Chin. Phys. Lett., 2010, 27(1): 121203
[11] ZHANG Dan, ZHAO Qiao-Yan, ZHANG Qiu-Yang. S-Wave DK Interactions in the Chiral SU(3) Quark Model[J]. Chin. Phys. Lett., 2009, 26(9): 121203
[12] BI Zheng, PANG Hou-Rong, PING Jia-Lun. Effect of Hidden Colour Channel on H Particle in Chiral Quark Model[J]. Chin. Phys. Lett., 2009, 26(1): 121203
[13] HE Deng-Ke, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature[J]. Chin. Phys. Lett., 2008, 25(2): 121203
[14] CHEN Ling-Zhi, PANG Hou-Rong, HUANG Hong-Xia, PING Jia-Lun, WANG Fan. Subtraction of Spurious Centre-of-Mass Motion in Quark Delocalization and Colour Screening Model[J]. Chin. Phys. Lett., 2007, 24(9): 121203
[15] ZHANG Hai-Xia, ZHANG Min, ZHANG Zong-Ye. QqQq' States in Chiral SU(3) Quark Model[J]. Chin. Phys. Lett., 2007, 24(9): 121203
Viewed
Full text


Abstract