CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
All-Atom Direct Folding Simulation for Proteins Using the Accelerated Molecular Dynamics in Implicit Solvent Model |
LI Zong-Chao, DUAN Li-Li**, FENG Guo-Qiang, ZHANG Qing-Gang |
School of Physics and Electronics, Shandong Normal University, Jinan 250014
|
|
Cite this article: |
LI Zong-Chao, DUAN Li-Li, FENG Guo-Qiang et al 2015 Chin. Phys. Lett. 32 118701 |
|
|
Abstract We report the results of protein folding (2I9M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a 100-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 ?, 0.63 ?, 0.52 ?, 1.1 ? and 0.78 ?. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs.
|
|
Received: 27 April 2015
Published: 01 December 2015
|
|
PACS: |
87.15.Cc
|
(Folding: thermodynamics, statistical mechanics, models, and pathways)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
|
|
|
[1] Chiti F and Dobson C M 2006 Annu. Rev. Biochem. 75 333 [2] Cohen F E and Kelly J W 2003 Nature 426 905 [3] Slepoy A, Singh R, Pazmandi F, Kulkarni R and Cox D 2001 Phys. Rev. Lett. 87 058101 [4] Kelley L A and Sternberg M J 2009 Nat. Protoc. 4 363 [5] Scheraga H A, Khalili M and Liwo A 2007 Annu. Rev. Phys. Chem. 58 57 [6] Duan L L, Mei Y, Zhang Q G and Zhang J Z 2009 J. Chem. Phys. 130 115102 [7] Xu W X, Wang J and Wang W 2005 Chin. Phys. Lett. 22 258 [8] Hamelberg D, Mongan J and McCammon J A 2004 J. Chem. Phys. 120 11919 [9] Markwick P R, Bouvignies G and Blackledge M 2007 J. Am. Chem. Soc. 129 4724 [10] Hamelberg D and McCammon J A 2005 J. Am. Chem. Soc. 127 13778 [11] Bucher D, Pierce L C, McCammon J A and Markwick P R 2011 J. Chem. Theory Comput. 7 890 [12] Xie Y Y, Zhou C J, Zhou Z R, Hong J, Che M X, Fu Q S, Song A X, Lin D H and Hu H Y 2010 FASEB J. 24 196 [13] Pantoja Uceda D, Pastor M T, Salgado J, Pineda Lucena A and Pérez Payá E 2008 J. Pept. Sci. 14 845 [14] Priya R, Biukovi? G, Gayen S, Vivekanandan S and Grüber G 2009 J. Bacteriol. 191 7538 [15] Chan D C, Fass D, Berger J M and Kim P S 1997 Cell 89 263 [16] Case D, Darden T, Cheatham III T E, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W and Merz K 2012 AMBER 12 (San Francisco: University of California) [17] Onufriev A, Bashford D and Case D A 2004 Proteins 55 383 [18] Andersen H C 1983 J. Comput. Phys. 52 24 [19] Miao Y L, Feixas F, Eun C and McCammon J A 2015 J. Comput. Chem. 36 1536 [20] Englander S W and Mayne L 2014 Proc. Natl. Acad. Sci. USA 111 15873 [21] Xu W X and Li Y 2012 Chin. Phys. Lett. 29 068702 [22] Miao Y L, Sinko W, Pierce L, Bucher D, Walker R C and McCammon J A 2014 J. Chem. Theory Comput. 10 2677 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|