Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117401    DOI: 10.1088/0256-307X/32/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2
WANG Pei-Pei1, XUE Mian-Qi1, LONG Yu-Jia1,2, ZHAO Ling-Xiao1, CAI Yao1, YANG Huai-Xin1, LI Jian-Qi1,3, REN Zhi-An1,3, CHEN Gen-Fu1,3**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Renmin University of China, Beijing 100872
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia et al  2015 Chin. Phys. Lett. 32 117401
Download: PDF(2249KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We synthesize a set of Pd-doped polycrystalline samples PdxNdSeTe2 and measure their physical properties. Compared with pure NdSeTe2, the charge density wave (CDW) order is continuously suppressed with the Pd-intercalation. Bulk superconductivity first appears at x=0.06 with Tc nearly 2.5 K, coexisting with a CDW transition at 176 K. Further Pd-doping enhances Tc, until it reaches the maximum value 2.84 K at x=0.1, meanwhile the CDW transition vanishes. The upper critical field for the optimal doping sample Pd0.1NdSeTe2 is determined from the R–H measurement, which is estimated to be 0.6 T. These results provide another kind of ideal compound for studying the interplay between CDW and superconductivity systematically.
Received: 24 July 2015      Published: 01 December 2015
PACS:  74.25.-q (Properties of superconductors)  
  71.45.Lr (Charge-density-wave systems)  
  74.25.F- (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Pei-Pei
XUE Mian-Qi
LONG Yu-Jia
ZHAO Ling-Xiao
CAI Yao
YANG Huai-Xin
LI Jian-Qi
REN Zhi-An
CHEN Gen-Fu
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Wu T et al 2013 Nat. Commun. 4 2113
[3] Bari?i? N et al 2013 Nat. Phys. 9 761
[4] Joe Y I et al 2014 Nat. Phys. 10 421
[5] Zhang S C 1997 Science 275 1089
[6] Kamihara Y et al 2008 J. Am. Chem. Soc. 130 3296
[7] Chen G F et al 2008 Phys. Rev. Lett. 100 247002
[8] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[9] Jérome D 2004 Chem. Rev. 104 5565
[10] Nunezregueiro M et al 1993 Synth. Met. 56 2653
[11] Mattheiss L F et al 1988 Phys. Rev. B 37 3745
[12] Morosan E et al 2006 Nat. Phys. 2 544
[13] Singh Y et al 2005 Phys. Rev. B 72 45106
[14] Torchinsky D H et al 2013 Nat. Mater. 12 387
[15] Fujita M et al 2004 Phys. Rev. B 70 104517
[16] Chang J et al 2012 Nat. Phys. 8 871
[17] He J B et al 2013 arXiv:1301.3032[cond-mat.supr-con]
[18] Zhai H F et al 2014 Phys. Rev. B 90 064518
[19] Lin W et al 1965 Inorg. Chem. 4 877
[20] Norling B K et al 1966 Inorg. Chem. 5 1488
[21] Fokwa Tsinde B P et al 2005 Solid State Sci. 7 573
[22] Patschke R et al 2002 Phys. Chem. Chem. Phys. 4 3266
[23] Wang P P et al 2015 Chin. Phys. Lett. 32 087101
[24] Yokoya T et al 2005 Phys. Rev. B 71 140504
[25] Felser C et al 1998 J. Mater. Chem. 8 1787
[26] Qian D et al 2007 Phys. Rev. Lett. 98 117007
[27] Jeong T et al 2007 Phys. Rev. B 76 153103
[28] Morosan E et al 2010 Phys. Rev. B 81 094524
[29] Brouet V et al 2004 Phys. Rev. Lett. 93 126405
[30] Laverock J et al 2005 Phys. Rev. B 71 085114
[31] Campbell A M and Evetts J E 1972 Adv. Phys. 21 199
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 117401
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 117401
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 117401
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 117401
[5] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 117401
[6] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 117401
[7] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 117401
[8] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 117401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 117401
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 117401
[11] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 117401
[12] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 117401
[13] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 117401
[14] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 117401
[15] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 117401
Viewed
Full text


Abstract