Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 115201    DOI: 10.1088/0256-307X/32/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance
WANG Guan-Qiong1,2,3**, MA Jun1,2, WEILAND J.1,4, ZAGORODNY A.5
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
2Centre for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031
3Centre for Fusion Energy Science and Technology, China Academy of Engineering Physics, Beijing 100094
4Chalmers University of Technology and EURATOM-VR Association, Gothenburg, Sweden
5Bogoliubov Institute for Theoretical Physics, Kiev 03680, Ukraine
Cite this article:   
WANG Guan-Qiong, MA Jun, WEILAND J. et al  2015 Chin. Phys. Lett. 32 115201
Download: PDF(493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We apply the reductive perturbation method to the simple electrostatic ion-temperature-gradient mode in an advanced fluid description. The fluid resonance turns out to play a major role for the excitation of zonal flows. This is the mechanism recently found to lead to the low-to-high (L–H) mode transition and to the nonlinear Dimits upshift in transport code simulations. It is important that we have taken the nonlinear temperature dynamics from the Reynolds stress as the convected diamagnetic flow. This has turned out to be the most relevant effect as found in transport simulations of the L–H transition, internal transport barriers and Dimits shift. This is the first time that an analytical method is applied to a system which numerically has been found to give the right experimental dynamics.
Received: 15 June 2015      Published: 01 December 2015
PACS:  52.35.Ra (Plasma turbulence)  
  52.35.Kt (Drift waves)  
  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/115201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/115201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guan-Qiong
MA Jun
WEILAND J.
ZAGORODNY A.
[1] Hasegawa A, Maclennan C G and Kodama Y 1979 Phys. Fluids 22 2122
[2] Sagdeev R Z, Shapiro V D and Shevchenko V I 1978 Fiz. Plazmy 4 551
[3] Weiland J and Sanuki H 1979 Phys. Lett. A 72 221
[4] Cheng C Z and Tsang K T 1981 Nucl. Fusion 21 643
[5] Lin Z, Hahm T S, Lee W W et al 1999 Phys. Rev. Lett. 83 3645
[6] Dimits A M, Bateman G, Beer M A et al 2000 Phys. Plasmas 7 969
[7] Diamond P H, Itoh S I, Itoh K et al 2005 Plasma Phys. Contr. F 47 R35
[8] Wang G Q, Ma J and Weiland J 2015 Phys. Scr. 90 065604
[9] Wagner F, Fussmann G, Grave T et al 1984 Phys. Rev. Lett. 53 1453
[10] Weiland J, Crombe K, Mantica P et al 2011 AIP Conf. Proc. 1392 85
[11] Weiland J 2014 Phys. Plasmas 21 122501
[12] Weiland J 2012 Stability and Transport in Magnetic Confinement Systems (New York: Springer)
[13] Rogers B N, Dorland W and Kotschenreuther M 2000 Phys. Rev. Lett. 85 5336
[14] Weiland J, Liu C S and Zagorodny A 2015 J. Plasma Phys. 81 905810101
[15] Bogoliubov N N and Mitropolskii A B 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations (Delhi: Gordon and Breach)
[16] Davidson R C 1972 Methods in Nonlinear Plasma Theory (New York: Academic Press)
[17] Taniuti T and Wei C C 1968 J. Phys. Soc. Jpn. 24 941
[18] Nozaki K, Taniuti T and Watanabe K 1979 J. Phys. Soc. Jpn. 46 991
[19] Weiland J, Jarmen A B and Nordman H 1989 Nucl. Fusion 29 1810
[20] Doyle E J, Houlberg W A, Kamada Y et al 2007 Nucl. Fusion 47 S18
[21] Waltz R E, Kerbel G D and Milovich J 1994 Phys. Plasmas 1 2229
[22] Zagorodny A and Weiland J 2009 Phys. Plasmas 16 052308
[23] Guo S C and Weiland J 1997 Nucl. Fusion 37 1095
[24] Volterra V 1931 Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Cahiers Scientifiques VIII (Paris: Gauthier-Villars)
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 115201
[2] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 115201
[3] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 115201
[4] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 115201
[5] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 115201
[6] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 115201
[7] A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali. Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge[J]. Chin. Phys. Lett., 2012, 29(5): 115201
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 115201
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 115201
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 115201
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 115201
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 115201
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 115201
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 115201
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 115201
Viewed
Full text


Abstract