Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 114301    DOI: 10.1088/0256-307X/32/11/114301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film
SHU Yi, TIAN He, WANG Zhe, ZHAO Hai-Ming, MI Wen-Tian, LI Yu-Xing, CAO Hui-Wen, REN Tian-Ling**
Institute of Microelectronics, Tsinghua University, Beijing 100084
Cite this article:   
SHU Yi, TIAN He, WANG Zhe et al  2015 Chin. Phys. Lett. 32 114301
Download: PDF(1164KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A highly sensitive sensor with piezoresistive nanocomposite material assembled in a flexible composite film is designed and tested for hydrodynamic sensing. Within the device, two nanocomposite films with micrometer scale modified small bumps on the surface are arranged together face-to-face by the interlocking mechanism. These structures are verified to have full-scale piezoresistive high sensitivities which are very appropriate for underwater sensing. Obvious output signals can be observed from the device subjected to the hydroacoustic dipole (vibrating sphere) with exciting frequency from 10 Hz to 40 Hz. A spectral peak can be seen in the Fourier analysis of the output signal at the corresponding frequency.
Received: 20 March 2015      Published: 01 December 2015
PACS:  43.58.+z (Acoustical measurements and instrumentation)  
  85.35.-p (Nanoelectronic devices)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/114301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/114301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHU Yi
TIAN He
WANG Zhe
ZHAO Hai-Ming
MI Wen-Tian
LI Yu-Xing
CAO Hui-Wen
REN Tian-Ling
[1] Lewin P A 1981 Ultrasonics 19 213
[2] Beard P C, Hurrell A, Van den Elzen E and Mills T N 1998 Proc. IEEE Ultrason. Symp. (Sendai Japan 5–8 October 1998) 2 1881
[3] Wurster C, Staudenraus J and Eisenmenger W 1994 Proc. IEEE Ultrason. Symp. 2 941
[4] Staudenraus J and Eisenmenger W 1993 Ultrasonics 31 267
[5] Morris P, Hurrell A, Shaw A, Zhang E and Beard P 2009 J. Acoust. Soc. Am. 125 3611
[6] Chen J, Engel J, Chen N, Pandya S, Coombs S and Liu C 2006 IEEE Int. Conf. Micro Electro Mech. Syst. (Istanbul Turkey 22–26 Jan. 2006) p 694
[7] McConney M E, Chen N, Lu D, Hu H A, Coombs S, Liu C and Tsukruk V V 2009 Soft Matter 5 292
[8] Peleshanko S, Julian M D, Ornatska M, McConney M E, LeMieux M C, Chen N, Tucker C, Yang Y, Liu C, Humphrey J A C and Tsukruk V V 2007 Adv. Mater. 19 2903
[9] Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones D L and Liu C 2006 Proc. Natl. Acad. Sci. USA 103 18891
[10] Maschmann M R, Ehlert G J, Dickinson B T, Phillips D M, Ray C W, Reich G W and Baur J W 2014 Adv. Mater. 26 3230
[11] Gong S, Schwalb W, Wang Y and Chen Y 2014 Nat. Commun. 5 1
[12] Lee H, Chang S and Yoon E 2006 J. MicroelectroMech. Syst. 15 1681
[13] Lipomi D J, Vosgueritchian M, Tee B C, Hellstrom S L, Lee J, Fox C H and Bao Z 2011 Nat. Nanotechnol. 6 788
[14] Mannsfeld S C B, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V O, Sokolov A N, Reese C and Bao Z 2010 Nat. Mater. 9 859
[15] Metzger C and Fleisch E 2008 Appl. Phys. Lett. 92 013506
[16] Pang C, Lee G Y, Kim T, Kim S M, Kim H N, Ahn S H and Suh K Y 2012 Nat. Mater. 11 795
[17] Wang X, Gu Y, Xiong Z, Cui Z and Zhang T 2014 Adv. Mater. 26 1336
[18] Ferreira da Silva A, Goncalves A F, Ferreira L A A, Araujo F M M, Mendes P M and Correia J H 2011 IEEE Trans. Ind. Electron. 58 2728
[19] Guigou C and Fuller C R 1999 J. Sound Vib. 220 541
[20] Lockyer A J, Alt K H, Coughlin D P, Durham M D, Kudva J N, Goetz A C and Tuss J 1999 Smart Struct. Mater.: Ind. Commercial Appl. Smart Struct. Technol. p 410
[21] Papakostas T V, Lima J and Lowe M 2002 Proc. IEEE Sensors p 1620
[22] Atema J, Fay R, Popper A and Tavolga W 1988 Sensory Biology of Aquatic Animals (New York: Springer) p 131
Related articles from Frontiers Journals
[1] SAMCHENKO A. N., KOSHELEVA A. V., SHVYREV A. N., PIVOVAROV A. A.. Low-Frequency Hydroacoustic Experiments on the Shelf Using the Data of Geoacoustic Sediment Model[J]. Chin. Phys. Lett., 2014, 31(12): 114301
[2] CHEN Jian-Jun, ZHANG De, LIU Xiao-Zhou. A Reflective Nonlinear Acoustic Microscope to Contour the Quantitative Adhesion at a Bonded Solid-Solid Interface[J]. Chin. Phys. Lett., 2014, 31(09): 114301
[3] XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves[J]. Chin. Phys. Lett., 2010, 27(1): 114301
[4] ZHANG Bi-Xing, WANG Cheng-Hao, LAI Pu-Xiang. Theoretical and Experimental Investigation of Ultrasonic Focusing with Annular Phased Array[J]. Chin. Phys. Lett., 2006, 23(4): 114301
[5] DUAN Shi-Mei, SHOU Wen-De, HE Pei-Zhong, QIAN De-Chu, XIA Rong-Min. A Novel Method to Measure Acoustic Power of Focusing Transducer with Spherical Surface Based on Self-Reciprocity Theorem[J]. Chin. Phys. Lett., 2005, 22(1): 114301
[6] SHOU Wen-De, YAN Jia-Yong, WANG Hong-Zhang, QIAN De-Chu. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer[J]. Chin. Phys. Lett., 2002, 19(8): 114301
[7] LIU Yong-Gang, XIE Hong-Sen, GUO Jie, ZHOU Wen-Ge, XU Ji-An, ZHAO Zhi-Dan . A New Method for Experimental Determination of Compressional Velocities in Rocks and Minerals at High-pressure[J]. Chin. Phys. Lett., 2000, 17(12): 114301
[8] WANG Ru-ju, QIN Zhi-cheng, LI Feng-ying, XIE Hong-sen. Elastic Behaviors of Bulk Metallic Glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Investigated by Using Ultrasonic Technique[J]. Chin. Phys. Lett., 1997, 14(12): 114301
Viewed
Full text


Abstract