Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 108501    DOI: 10.1088/0256-307X/32/10/108501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes
ZHANG Hong-Mei1,2**, WANG Dan-Bei1, WU Yuan-Wu1, FANG Da1, HUANG Wei1**
1Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023
2Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023
Cite this article:   
ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu et al  2015 Chin. Phys. Lett. 32 108501
Download: PDF(673KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bottom-emitting organic light-emitting diodes (BOLEDs), using Al/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alq3 as the emitter, are fabricated. At the same time, the performance improvement of the BOLEDs having a capping layer inserted between the semitransparent anode and the glass substrate is studied. The optimized microcavity BOLED shows a current efficiency (5.49 cd/A) enhancement of 10% compared with a conventional BOLED based on ITO (5.0 cd/A). Slight color variation is observed in 120° forward viewing angle with 50 nm BCP as the capping layer. Strong dependence of efficiency on Al anode thickness and the thickness and refractor index of the capping layer is explained. The results indicate that the BOLEDs with the double-aluminum electrode have potential practical applications.
Received: 15 April 2015      Published: 30 October 2015
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  42.15.Eq (Optical system design)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/108501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/108501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hong-Mei
WANG Dan-Bei
WU Yuan-Wu
FANG Da
HUANG Wei
[1] Liu Y F, Feng J, Zhang Y F et al 2014 Org. Electron. 15 2661
[2] Lu A W and Raki? A D 2009 Appl. Opt. 48 2282
[3] Ji Y, Ran F, Xu H G et al 2014 Org. Electron. 15 3137
[4] Chang Y L, Rao Y L, Gong S L et al 2014 Adv. Mater. 26 6729
[5] Kim Y H, Lee J, Hofmann S et al 2013 Adv. Funct. Mater. 23 3763
[6] Yambem S D, Ullah M, Tandy K et al 2014 Laser Photon. Rev. 8 165
[7] Choi S, Kim S J, Hernandez C F and Kippelen B 2011 Opt. Express 19 A793
[8] Zhang X W, Jiang X Y, Wang H et al 2011 J. Optoelectron. Adv. Mater. 13 3387
[9] Najafabadi E, Knauer K A, Haske W et al 2012 Appl. Phys. Lett. 101 023304
[10] Bo S F, Yu D, Qiang Y Y et al 2014 Org. Electron. 15 2546
[11] Helander M G, Wang Z B, Greiner M T et al 2009 Adv. Mater. 22 2037
[12] Najafabadi E, Knauer K A, Haske W and Kippelen B 2013 Org. Electron. 14 1271
[13] Cheylan S, Ghosh D S, Krautz D et al 2011 Org. Electron. 12 818
[14] Wu Z J and Wang J X 2011 J. Lumin. 131 2419
[15] Zhang M X, Chen Z J, Xiao L et al 2013 J. Appl. Phys. 113 113105
[16] Zhang H M and Choy W C H 2008 Org. Electron. 9 964
[17] Deng L L, Chen S F, Xie J et al 2013 Org. Electron. 14 423
[18] Xie J, Chen C F, Chen S F et al 2011 Org. Electron. 12 322
[19] Zhang X W, Li J, Zhang L et al 2010 Thin Solid Films 518 1756
[20] Coens A, Chakaroun M, Fischer A P A et al 2012 Opt. Express 20 29252
[21] Wang Z K, Naka S and Okada H 2011 Solid-State Electron. 56 155
[22] Riel H, Karg S, Beierlein T et al 2003 Appl. Phys. Lett. 82 466
[23] Wang F X, Qiao X F, Xiong T and Ma D 2008 Org. Electron. 9 985
[24] Li J Z, Yahiro M, Ishida K et al 2005 Synth. Met. 151 141
[25] Zhang H M and Choy W C H 2008 J. Phys. D: Appl. Phys. 41 062003
[26] Zhang Y F, Zhao S L and Su L 2013 Chin. Phys. Lett. 30 057801
[27] Dodabalapur A, Rothberg L J, Jordan R H et al 1996 J. Appl. Phys. 80 6954
[28] Tsutsui T, Yahiro M, Yokogawa H et al 2001 Adv. Mater. 13 1149
[29] Gu G, Garbuzov D Z, Burrows P E et al 1997 Opt. Lett. 22 396
[30] M?ller S and Forrest S R 2002 J. Appl. Phys. 91 3324
[31] Shiang J J, Faircloth T J and Duggal A R 2004 J. Appl. Phys. 95 2889
[32] Fan Y, Chen J S and Ma D 2013 Org. Electron. 14 3234
[33] Lee J, Hofmann S, Furno M et al 2011 Opt. Lett. 36 1443
[34] Nakamura T, Tsutsumi N, Juni N and Fujii H 2005 J. Appl. Phys. 97 054505
[35] Hofmann S, Thomschke M, Freitag P et al 2010 Appl. Phys. Lett. 97 253308
[36] Jordan R H, Rothberg L J, Dodabalapur A and Slusher R E 1996 Appl. Phys. Lett. 69 1997
[37] Wu C C, Lin C L, Hsieh P Y and Chiang H H 2004 Appl. Phys. Lett. 84 3966
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 108501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 108501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 108501
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 108501
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 108501
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 108501
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 108501
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 108501
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 108501
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 108501
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 108501
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 108501
[13] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 108501
[14] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 108501
[15] RAJABI Kamran, CAO Wen-Yu, SHEN Tihan , JI Qing-Bin, HE Juan, YANG Wei, LI Lei, LI Ding, WANG Qi, HU Xiao-Dong. The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections[J]. Chin. Phys. Lett., 2015, 32(02): 108501
Viewed
Full text


Abstract