CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts |
WU Dong-Xu1, CHENG Hong-Bin2**, ZHENG Xue-Jun2,3**, WANG Xian-Ying2, WANG Ding2, LI Jia1 |
1School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093 2School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 3School of Mechanical Engineering, Xiangtan University, Xiangtan 411105
|
|
Cite this article: |
WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun et al 2015 Chin. Phys. Lett. 32 108102 |
|
|
Abstract GaN nanobelts are synthesized using the chemical vapor deposition method with the catalyst of Ni. The microstructure, composition and photoluminescence property are characterized by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence spectra. The results demonstrate that the single crystalline GaN nanobelts are grown with a hexagonal wurtzite structure, in width ranging from 500 nm to 2 μm and length up to 10–20 μm. Moreover, a large piezoelectric coefficient d33 of 20 pm/V is obtained from GaN nanobelts by an atomic force microscopy and the high piezoelectric property implies that the perfect single crystallinity and the freedom of dislocation for the GaN nanobelt have significant impact on the electromechanical response.
|
|
Received: 10 July 2015
Published: 30 October 2015
|
|
PACS: |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
|
|
|
[1] Maruska H P and Tietjent J J 1969 Appl. Phys. Lett. 15 327 [2] Morkoc H and Mohammad S N 1995 Science 267 51 [3] Ponce F A and Bour D P 1997 Nature 386 351 [4] Fujii T, Gao Y, Sharma R et al 2004 Appl. Phys. Lett. 84 855 [5] Mohammad S N and Morkoc H 1996 Prog. Quantum Electron. 20 361 [6] Yoo J, Hong Y J, An S J et al 2006 Appl. Phys. Lett. 89 043124 [7] Samanta C, Sathish C D, Ramkumar J et al 2012 Mater. Res. Bull. 47 952 [8] Kuo D H, Yang H C and Cheng J Y 2011 J. Electrochem. Soc. 158 K47 [9] Hersee S D, Sun X Y and Wang X 2006 Nano Lett. 6 1808 [10] Park J H, Navamathavan R, Ra Y B et al 2011 J. Cryst. Growth 319 31 [11] Choi K, Arita M and Arakawa Y 2012 J. Cryst. Growth 357 58 [12] Han W, Fan S S, Li Q et al 1997 Science 277 1287 [13] Kim Y H, Lee J Y, Lee S H et al 2005 Appl. Phys. A 80 1635 [14] Averett K L, Van Nostrand J E, Albrecht J D et al 2007 J. Vac. Sci. Technol. B 25 964 [15] Bertness K A, Sanford N A, Barker J M et al 2006 J. Electron. Mater. 35 576 [16] Yu R, Dong L, Pan C et al 2012 Adv. Mater. 24 3532 [17] Muensit S and Guy I L 1998 Appl. Phys. Lett. 72 1896 [18] Lueng C M, Chan H L W, Sueya C, Fong W K et al 1999 J. Non-Cryst. Solids 254 123 [19] Perlin P, Jauberthie-Carillon C, Itie J P et al 1992 Phys. Rev. B 45 83 [20] Monemar B 1974 Phys. Rev. B 10 676 [21] Ridley B K 1982 Quantum Processes in Semiconductors (Oxford: Clarendon) p 62 [22] Yang Y C, Song C, Wang X H, Zeng F et al 2008 Appl. Phys. Lett. 92 012907 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|