Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107301    DOI: 10.1088/0256-307X/32/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transport through a Single Barrier on Monolayer MoS2
CHENG Fang1**, REN Yi1, SUN Jin-Fang2
1Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
2College of Mechanical and Electrical Engineering, Anhui Polytechnic University, Wuhu 241000
Cite this article:   
CHENG Fang, REN Yi, SUN Jin-Fang 2015 Chin. Phys. Lett. 32 107301
Download: PDF(650KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate theoretically quantum transport through a single barrier on monolayer MoS2. It is found that the transmission properties of spin-up (down) electrons in the K valley are the same as spin-down (up) electrons in the K' valley due to the time-reversal symmetry. Generally, the transmission probability for transport through an n–n–n (or p–p–p) junction is an oscillating function of incident angle, barrier height, as well as the incident energy of electrons. The present transmission shows a directional-dependent tunneling depending sensitively on the spin orientation for transport through a p–p–p junction. While for transport through an n–p-n junction, monolayers of MoS2 become opaque for almost all angles of incident θ0 except for θ0~θ0m (the resonant angles). The positions and numbers of resonant peaks in the transmission are determined by the distance between the two barriers and the spin orientation. The conductance in such systems can be tuned significantly by changing the height of the electric potential.
Received: 22 May 2015      Published: 30 October 2015
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.70.Tj (Spin-orbit effects)  
  71.20.Nr (Semiconductor compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Fang
REN Yi
SUN Jin-Fang
[1] Novoselov K S et al 2004 Science 306 666
[2] Radisavljevic B et al 2011 Nat. Nanotechnol. 6 147
[3] Splendiani A et al 2010 Nano Lett. 10 1271
[4] Xiao D et al 2007 Phys. Rev. Lett. 99 236809
[5] Rycerz A et al 2007 Nat. Phys. 3 172
[6] Zhu Z et al 2012 Nat. Phys. 8 89
[7] Mak K F et al 2012 Nat. Nanotechnol. 7 494
[8] Zeng H et al 2012 Nat. Nanotechnol. 7 490
[9] Wu S et al 2013 Nat. Phys. 9 149
[10] Jones A M et al 2013 Nat. Nanotechnol. 8 634
[11] Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
[12] Li Y et al 2008 J. Am. Chem. Soc. 130 16739
[13] He J, Wu K, Sa R, Li Q and Wei Y 2010 Appl. Phys. Lett. 96 082504
[14] Ataca C, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 13303
[15] Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J and Hong S C 2011 Phys. Rev. B 84 045409
[16] Ganatra R and Zhang Q 2014 ACS Nano 8 4074
[17] Na J, Joo M K, Shin M, Huh J, Kim J S, Piao M, Jin J E, Jang H K, Choi H J, Shim J H and Kim G T 2014 Nanoscale 6 433
[18] Renteria J, Samnakay R, Rumyantsev S L, Jiang C, Goli P, Shur M S and Balandin A A 2014 Appl. Phys. Lett. 104 153104
[19] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Walker A R H and Xing H G 2014 ACS Nano 8 986
[20] Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G and Jonker B T 2013 Nano Lett. 13 668
[21] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411
[22] Zhai F, Zhao X, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442
[23] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802
[24] Liao W H, Zhao H, Ouyang G, Chen K Q and Zhou G H 2012 Appl. Phys. Lett. 100 153112
[25] Zhu Z Y, Cheng Y C and Schwingenschl?gl U 2011 Phys. Rev. B 84 153402
[26] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[27] Zahid F, Liu L, Zhu Y, Wang J and Guo H 2013 AIP Adv. 3 052111
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 107301
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 107301
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 107301
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 107301
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 107301
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 107301
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 107301
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 107301
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 107301
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 107301
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 107301
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 107301
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 107301
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 107301
[15] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 107301
Viewed
Full text


Abstract