FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film |
LIANG Hui-Min, WANG Jing-Quan**, WANG Xue, WANG Gui-Mei |
Hebei University of Engineering, Handan 056038
|
|
Cite this article: |
LIANG Hui-Min, WANG Jing-Quan, WANG Xue et al 2015 Chin. Phys. Lett. 32 104206 |
|
|
Abstract A surface plasmon interference lithography assisted by a Fabry–Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal film is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.
|
|
Received: 30 March 2015
Published: 30 October 2015
|
|
PACS: |
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
|
|
|
[1] Luo X and Ishihara T 2004 Appl. Phys. Lett. 84 4780 [2] Srituravanich W, Fang N, Durant S, Ambati M, Sun C and Zhang X 2004 J. Vac. Sci. Technol. B 22 3475 [3] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107 [4] Srituravanich W, Durant S, Lee H, Sun C and Zhang X 2005 J. Vac. Sci. Technol. B 23 2636 [5] Liu Z, Wei Q and Zhang X 2005 Nano Lett. 5 957 [6] Zeng B, Pan L, Liu L, Fang L, Wang C and Luo X 2009 J. Opt. A: Pure Appl. Opt. 11 125003 [7] Yang X F, Fang L, Zeng B B, Wang C, Feng Q and Luo X 2010 J. Opt. 12 045001 [8] Guo K, Liu J L, Zhou K Y and Liu S T 2015 Chin. Phys. B 24 047301 [9] Bouhelier A, Ignatovich H, Bruyant A, Huang C, Francs G C, Weeber J C, Dereux A, Wiederrecht G P and Novotny L 2007 Opt. Lett. 32 2535 [10] Bezus E A, Bykov D A, Doskolovich L L and Kadomin I I 2008 J. Opt. A: Pure Appl. Opt. 10 095204 [11] Murukeshan V M and Sreekanth K V 2009 Opt. Lett. 34 845 [12] Guo X W, Du J L, Guo Y K and Yao J 2006 Opt. Lett. 31 2613 [13] Guo X W, Du J L, Luo X G, Du C L and Guo Y K 2007 Microelectron. Eng. 84 1037 [14] Lim Y, Kim S, Kim H, Jung J and Lee B 2008 IEEE J. Quantum Electron. 44 305 [15] Fang L, Du J L, Guo X W, Wang J Q, Zhang Z Y, Luo X G and Du C L 2008 Chin. Phys. B 17 2499 [16] Sreekanth K V and Murukeshan V M 2010 J. Vac. Sci. Technol. B 28 128 [17] Guo X and Dong Q 2010 J. Appl. Phys. 108 113108 [18] Liang H M and Wang J Q 2011 Chin. Phys. Lett. 28 018101 [19] Guo X, Dong Q, Shi R, Li S and Du J 2013 Microelectron. Eng. 105 103 [20] Wang J and Liang H 2013 J. Appl. Phys. 113 233101 [21] Dong J, Liu J, Liu P, Liu J, Zhao X, Kang G, Xie J and Wang Y 2013 Opt. Commun. 288 122 [22] Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C and Luo X 2015 Appl. Phys. Lett. 106 093110 [23] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) [24] Rakic A D, Djurisic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|