FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz |
LI Yuan-Yuan, LIU Jun-Qi**, WANG Tao, LIU Feng-Qi**, ZHAI Shen-Qiang, ZHANG Jin-Chuan, ZHUO Ning, WANG Li-Jun, LIU Shu-Man, WANG Zhan-Guo |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
LI Yuan-Yuan, LIU Jun-Qi, WANG Tao et al 2015 Chin. Phys. Lett. 32 104203 |
|
|
Abstract A high-power and high-efficiency GaAs/AlGaAs-based terahertz (THz) quantum cascade laser structure emitting at 3.3 THz is presented. The structure is based on a hybrid bound-to-continuum transition and resonant-phonon extraction active region combined with a semi-insulating surface-plasmon waveguide. By optimizing material structure and device processing, the peak optical output power of 758 mW with a threshold current density of 120 A/cm2 and a wall-plug efficiency of 0.92% at 10 K and 404 mW at 77 K are obtained in pulsed operation. The maximum operating temperature is as high as 115 K. In the cw mode, a record optical output power of 160 mW with a threshold current density of 178 A/cm2 and a wall-plug efficiency of 1.32% is achieved at 10 K.
|
|
Received: 17 July 2015
Published: 30 October 2015
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
73.63.Hs
|
(Quantum wells)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
|
|
|
[1] Siegel P H 2002 IEEE Trans. Microwave Theory Tech. 50 910 [2] Tonouchi M 2007 Nat. Photon. 1 97 [3] Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156 [4] Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J and Wang Z G 2010 Chin. Phys. Lett. 27 104205 [5] Liu J Q, Chen J Y, Wang T, Li Y F, Liu F Q, Li L, Wang L J and Wang Z G 2013 Solid-State Electron. 81 68 [6] Wang T, Liu J Q, Chen J Y, Liu Y H, Liu F Q, Wang L J and Wang Z G 2013 Chin. Phys. Lett. 30 064201 [7] Danylov A A, Goyette T M, Waldman J, Coulombe M J, Gatesman A J, Giles R H, Qian X F, Chandrayan N, Vangala S, Termkoa K, Goodhue W D and Nixon W E 2010 Opt. Express 18 16264 [8] Danylov A A, Waldman J, Goyette T M, Gatesman A J, Giles R H, Li J, Goodhue W D, Linden K J and Nixon W E 2008 Opt. Express 16 5171 [9] Danylov A A, Goyette T M, Waldman J, Coulombe M J, Gatesman A J, Giles R H, Goodhue W D, Qian X F and Nixon W E 2009 Opt. Express 17 7525 [10] Li L H, Chen L, Zhu J X, Freeman J, Dean P, Valavanis A, Davies A G and Linfield E H 2014 Electron. Lett. 50 309 [11] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfiled E and Ritchie D 2002 Appl. Phys. Lett. 81 1381 [12] Williams B S 2007 Nat. Photon. 1 517 [13] Kohen S, Williams B S and Hu Q 2005 J. Appl. Phys. 97 053106 [14] Williams B S, Callebaut H, Kumar S, Hu Q and Reno J L 2003 Appl. Phys. Lett. 82 1015 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|