CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Percolation Transitions of Random Networks under a Weight Probability Function |
JIA Xiao1**, HONG Jin-Song1, YANG Hong-Chun1, YANG Chun2, FU Chuan-Ji1, HU Jian-Quan1, SHI Xiao-Hong1 |
1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 2School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
JIA Xiao, HONG Jin-Song, YANG Hong-Chun et al 2015 Chin. Phys. Lett. 32 016403 |
|
|
Abstract Based on the clusters growth mechanisms, we study a percolation model where the clusters are assigned to a weight probability function and the intracluster edges are excluded. The weight probability function includes a tunable parameter α. The model can realize the phase transition from continuous to multiple discontinuous and discontinuous as the value of α is tuned. According to the properties of the weight probability function, three typical cases which correspond to different clusters growth mechanisms are analyzed. When the system size N is equal to 1/α, probability modulation effect indicates that the percolation process generates a continuous phase transition which is similar to the classical Erd?s–Rényi (ER) network model. At α=1, it is shown that the lower pseudotransition point is converging to 1 in the thermodynamic limit and the cluster size distribution at the lower pseudotransition point does not obey the power-law behavior, indicating a first-order phase transition. For α=N?1/2, the order parameter exhibits multiple jumps and the magnitude of the jumps are randomly distributed. The numerical simulations find that the relative variance of the order parameter is nonzero on an extended interval. It indicates that the order parameter is non-self-averaging. The cluster size heterogeneity decreases oscillatorily from some moment, which also implies the phenomenon.
|
|
Published: 23 December 2014
|
|
|
|
|
|
[1] Watts D J and Strogatz S H 1998 Nature 393 409 [2] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47 [3] Newman M E J 2010 Networks: An introduction (New York: Oxford University Press) [4] Stauffer D and Aharony A 1994 Introduction to Percolation Theory (London: Taylor & Francis) [5] Sahimi M 1994 Applications of Percolation Theory (London: Taylor & Francis) [6] Grimmett G 1999 Percolation (Berlin: Springer) [7] Bollobás B 2011 Random Graphs 2nd edn (London: Cambridge University Press) [8] Erd?s P and R ényi A 1960 Publ. Math. Inst. Hungar. Acad. Sci. 5 17 [9] Achlioptas D, D'Souza R M and Spencer J 2009 Science 323 1453 [10] Cho Y S and Kahng B 2011 Phys. Rev. Lett. 107 275703 [11] Radicchi F and Fortunato S 2009 Phys. Rev. Lett. 103 168701 [12] D'Souza R M and Mitzenmacher M 2010 Phys. Rev. Lett. 104 195702 [13] Da Costa R A, Dorogovtsev S N, Goltsev A V and Mendes J F F 2010 Phys. Rev. Lett. 105 255701 [14] Cho Y S, Hwang S, Herrmann H J and Kahng B 2013 Science 339 1185 [15] Cho Y S et al 2009 Phys. Rev. Lett. 103 135702 [16] Jian Q H et al 2014 Chin. Phys. Lett. 31 078901 [17] Xiao J et al 2014 Chin. Phys. B 23 076401 [18] Araujo N A M and Herrmann H J 2010 Phys. Rev. Lett. 105 035701 [19] Manna S S and Chatterjee A 2011 Physica A 390 177 [20] Cho Y S and Kahng B 2010 Phys. Rev. E 81 030103(R) [21] Nagler J, Levina A and Timme M 2011 Nat. Phys. 7 265 [22] Riordan O and Warnke L 2011 Science 333 322 [23] Nagler J, Tiessen T and Gutch H W 2012 Phys. Rev. X 2 031009 [24] Schr?der M, Ebrahimnazhad Rahbari S H and Nagler J 2013 Nat. Commun. 4 2222 [25] Lee H K, Kim B J and Park H 2011 Phys. Rev. E 84 020101(R) [26] Chen W et al 2014 Phys. Rev. Lett. 112 155701 [27] Bastas N, Giazitzidis P, Maragakis M and Kosmidis K 2014 Physica A 407 54 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|