Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 016201    DOI: 10.1088/0256-307X/32/1/016201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method
K. Ephraim Babu1, N. Murali1, K. Vijaya Babu1, B. Kishore Babu2, V. Veeraiah1**
1Modelling and Simulation in Materials Science Laboratory, Department of Physics, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
2Department of Engineering Chemistry, AUCE(A), Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
Cite this article:   
K. Ephraim Babu, N. Murali, K. Vijaya Babu et al  2015 Chin. Phys. Lett. 32 016201
Download: PDF(701KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic perovskite KCdF3. The Kohn–Sham equations are solved by applying the full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation effects are included through the local density approximation (LDA), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) exchange potential. The calculated lattice constant is in good agreement with the experimental result. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are calculated. KCdF3 is ductile and elastically anisotropic. The calculations of the electronic band structure, density of states (DOS) and charge density show that this compound has an indirect energy band gap (M–Γ) with a mixed ionic and covalent bonding. The contribution of the different bands is analyzed from the total and partial density of states curves. Optical response of the dielectric functions, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are presented for the energy range of 0–40 eV. The compound KCdF3 can be used for high-frequency optical and optoelectronic devices.
Published: 23 December 2014
PACS:  62.20.D- (Elasticity)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/016201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/016201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Ephraim Babu
N. Murali
K. Vijaya Babu
B. Kishore Babu
V. Veeraiah
[1] Ouenzerfi R El, Ono S, Quema A et al 2004 J. Appl. Phys. 96 7655
[2] Shimamura K, Sato H, Bensalah A, Sudesh V, Machida H, Sarukura N and Fukuda T 2001 Cryst. Res. Technol. 36 801
[3] Setter N et al 2006 J. Appl. Phys. 100 051606
[4] Lim S H, Rastogi A C and Desu S B 2004 J. Appl. Phys. 96 5673
[5] Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H and Driz M 2005 Mater. Chem. Phys. 91 185
[6] Geguzina G A 2004 Integrated Ferroelectrics 64 61
[7] Huang B, Hong J M, Chen X T, Yu Z and You X Z 2005 Mater. Lett. 59 430
[8] Hidaka M, Hosogi S, Ono M and Horai K 1977 Solid State Commun. 23 503
[9] Mao A J and Kuang X Y 2008 J. Phys. Chem. A 112 2780
[10] Aramburu J A, Paredes J I, Barriuso M T and Moreno M 2000 Phys. Rev. B 61 6525
[11] Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H 2006 J. Phys. Chem. Solids 67 1531
[12] Rocher G S 2001 Structure and Bonding in Crystalline Materials (Cambridge: Cambridge University Press)
[13] Verma A S and Jindal V K 2009 J. Alloys Compd. 485 514
[14] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties edn Schwarz K (Vienna: Vienna Technological University)
[16] Perdew J R and Wang Y 1992 Phys. Rev. B 45 13244
[17] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A and Scuseria G E 2008 Phys. Rev. Lett. 101 239702
[18] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[19] Hayatullah, Murtaza, R Khenata, S Naeem, M N Khalid and S Mohammad 2013 Chin. Phys. Lett. 30 097101
[20] Kumar S, Suman Pandey and Auluck S 2014 Adv. Optoelectron. Mater. 2 10
[21] David Koller, Fabian Tran and Peter Blaha 2011 Phys. Rev. B 83 195134
[22] Yedukondalu N, Vikas D Ghule and Vaitheeswaran G 2012 J. Phys. Chem. C 116 16910
[23] Ephraim Babu K, Veeraiah A, Tirupati Swamy D and Veeraiah V 2012 Chin. Phys. Lett. 29 117102
[24] Murtaza G, Hayatulla, Khenata R, Khalid M N and Naeem S 2013 Physica B 410 131
[25] Meziani A and Belkhir H 2012 Comput. Mater. Sci. 61 67
[26] Blochl P E, Jepsen O and Anderson O K 1994 Phys. Rev. B 49 16223
[27] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[28] Reshak H and Jamal M 2012 J. Alloys Compd. 543 147
[29] Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier)
[30] Mayer B, Anton H, Bott E, Methfessel M, Sticht J and Schmidt P C 2003 Intermetallics 11 23
[31] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[32] Pugh S F 1982 Philos. Mag. 45 823
[33] Jakub Szlachetko, Katarzyna Michalow-Mauke, Maarten Nachtegaal and Jacinto S A 2014 J. Chem. Sci. 126 511
Related articles from Frontiers Journals
[1] Wang-Min Zhou, Wang-Jun Li. Instability of Epitaxially Strained Thin Films Based on Nonlocal Elasticity[J]. Chin. Phys. Lett., 2019, 36(1): 016201
[2] Yong-Hua Zhang, S. Karthikeyan, Jian Zhang. Polymer-Sandwich Ultra-Thin Silicon(100) Platform for Flexible Electronics[J]. Chin. Phys. Lett., 2016, 33(06): 016201
[3] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 016201
[4] LIU Yun-Fang, CHENG Lai-Fei, ZENG Qing-Feng, ZHANG Li-Tong. Effects of N on Electronic and Mechanical Properties of H-Type SiC[J]. Chin. Phys. Lett., 2015, 32(08): 016201
[5] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 016201
[6] FANG Ming-Lei, XU Feng, WEI Wen-Hou, YANG Zhi-Yong. Structural and Physical Properties of AsxSe100?x Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 016201
[7] WANG Ai-Kun, WANG Shi-Guang, XUE Rong-Jie, LIU Guo-Cai, ZHAO Kun. Correlation between Atomic Size Ratio and Poisson's Ratio in Metallic Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 016201
[8] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 016201
[9] ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng, ZHOU Chang-Jian, SHU Yi, TIAN He, REN Tian-Ling. A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane[J]. Chin. Phys. Lett., 2013, 30(8): 016201
[10] M. Güler, E. Güler. Embedded Atom Method-Based Geometry Optimization Aspects of Body-Centered Cubic Metals[J]. Chin. Phys. Lett., 2013, 30(5): 016201
[11] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 016201
[12] DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 016201
[13] WANG Ting, CUI Zhan-Zhong, XU Li-Xin. Thermoelastic Stress Field Investigation of GaN Material for Laser Lift-off Technique based on Finite Element Method[J]. Chin. Phys. Lett., 2009, 26(9): 016201
Viewed
Full text


Abstract