Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 016401    DOI: 10.1088/0256-307X/32/1/016401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A New Method for Determining the Equation of State of Aluminized Explosive
ZHOU Zheng-Qing, NIE Jian-Xin**, GUO Xue-Yong, WANG Qiu-Shi, OU Zhuo-Cheng, JIAO Qing-Jie**
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
Cite this article:   
ZHOU Zheng-Qing, NIE Jian-Xin, GUO Xue-Yong et al  2015 Chin. Phys. Lett. 32 016401
Download: PDF(664KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The time-dependent Jones–Wilkins–Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.
Published: 23 December 2014
PACS:  64.30.-t (Equations of state of specific substances)  
  82.20.Wt (Computational modeling; simulation)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/016401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/016401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Zheng-Qing
NIE Jian-Xin
GUO Xue-Yong
WANG Qiu-Shi
OU Zhuo-Cheng
JIAO Qing-Jie
[1] Zukas J A and Walters W 2002 Explosive Effects and Applications (New York: Springer) p 82
[2] Fickett W and Davis W C 1979 Detonation (Berkeley: University of California Press) p 68
[3] Cheret R 1993 Detonation of Condensed Explosives (New York: Springer)
[4] Cowan R D and Fickett W 1956 J. Chem. Phys. 24 932
[5] Kury J W et al 1965 The 4th Symposium (Intern.) Detonation (Maryland 12–15 October 1965) p 3
[6] Urtiew P A and Hayes B 1991 Combust. Explos. Shock Waves 27 505
[7] Ficket W and Davis W C 1963 Phys. Fluids 6 997
[8] Zhao Y H et al 2007 Acta Phys. Sin. 56 4791 (in Chinese)
[9] Jacobs S J 1969 The 12th Symposium (Intern.) Combustion (Poitiers 14–20 July 1968) p 501
[10] Cowperthwaite M and Zwisler W H 1976 The 6th Symposium (Intern.) Detonation (California 24–27 August 1976) p 162
[11] Chirat R and Pittion R G 1981 J. Chem. Phys. 74 4634
[12] Wen H H et al 2012 Chin. Phys. Lett. 29 108201
[13] Wang C et al 2009 Mod. Phys. Lett. B 23 285
[14] Zhou H Q et al 2014 Acta Phys. Sin. 63 224702 (in Chinese)
[15] Peng W et al 2006 Chin. Phys. Lett. 23 1652
[16] Vadhe P P et al 2008 Combust. Explos. Shock Waves 44 461
[17] Mader C L 1979 Numerical Modeling of Detonations (Berkeley: University of California Press)
[18] Guirguis R H and Miller P J 1993 The 10th Symposium (Intern.) Detonation (Boston 12–16 July 1993) p 33395
[19] Guirguis R H 1995 Proceedings of the 1994 JANNAF PSHS p 383
[20] Miller P J 1995 MRS Proceedings p 418
[21] Hornberg H and Volk F 1989 Propell.Explos. Pyrotech. 14 199
[22] Lindsay C M et al 2010 Propell.Explos. Pyrotech. 35 433
[23] Peterson J R and Wight C A 2012 Combust. Flame 159 2491
[24] Fluckiger R 1987 ISPE 10 270
[25] Keshavarz M H 2009 J. Hazard. Mater. 166 1296
[26] Keshavarz M H et al 2006 J. Hazard. Mater. 137 83
[27] Wescott B L et al 2005 J. Appl. Phys. 98 053514
[28] Zhang Q et al 2013 Sci. Chin. Phys. Mech. 56 1004
[29] Guirguis R et al 1998 The 10th American Physical Society Topical Conference on Shock Compression of Condensed Matter (Amherst July–1 August 1997) p 871
[30] Miller P J and Guirguis R H 1992 MRS Proceedings p 299
[31] Hamashima H et al 2004 The 13th American Physical Society Topical Conference on Shock Compression of Condensed Matter (Portland 20–25 July 2003) p 331
[32] Lee E L and Tarver C M 1980 Phys. Fluids 23 2362
[33] Tarver C M et al 1997 J. Appl. Phys. 81 7193
[34] Zhou Z Q et al 2014 J. Appl. Phys. 116 144906
[35] Johnson G R and Cook W H 1983 The 7th Symposium (Intern.) on Ballistics (Hague 19–21 April 1983) p 541
[36] Riedel W et al 2009 Int. J. Impact Eng. 36 283
Related articles from Frontiers Journals
[1] Huan Zhang, Xiao-Xi Duan, Chen Zhang, Hao Liu, Hui-Ge Zhang, Quan-Xi Xue, Qing Ye, Zhe-Bin Wang, Gang Jiang. Analysis of the Intrinsic Uncertainties in the Laser-Driven Iron Hugoniot Experiment Based on the Measurement of Velocities[J]. Chin. Phys. Lett., 2016, 33(08): 016401
[2] SONG Hai-Feng, TIAN Ming-Feng, LIU Hai-Feng, SONG Hong-Zhou, ZHANG Gong-Mu. Theoretical Study on Equation of State of Porous Mo and Sn[J]. Chin. Phys. Lett., 2014, 31(1): 016401
[3] GU Yun-Jun, CHEN Qi-Feng, CAI Ling-Cang, CHEN Zhi-Yun, ZHENG Jun. Temperature Measurements of Condensed Gaseous Hydrogen-Helium Mixtures under Multi-Shock Compression[J]. Chin. Phys. Lett., 2009, 26(8): 016401
Viewed
Full text


Abstract