CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Impact of Arsenic Related Defects on Electronic Performance of ZrO2/GaAs: Density Functional Theory Calculations |
WANG Yu-Peng1, WANG Yong-Ping2, SHI Li-Bin2** |
1College of Higher Professional Technique, Bohai University, Jinzhou 121013 2School of Mathematics and Physics, Bohai University, Jinzhou 121013
|
|
Cite this article: |
WANG Yu-Peng, WANG Yong-Ping, SHI Li-Bin 2015 Chin. Phys. Lett. 32 016102 |
|
|
Abstract Arsenic can diffuse into high-κ dielectrics during GaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the GaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.
|
|
Published: 23 December 2014
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
|
|
|
[1] Sun Q Q, Shi Y, Dong L, Liu H, Ding S J and Zhang D W 2008 Appl. Phys. Lett. 92 102908 [2] Lyons J L, Janotti A and Van de Walle C G 2011 Microelectron. Eng. 88 1452 [3] Li J P, Meng S H, Li L L, Lu H T and Tohyama T 2014 Comput. Mater. Sci. 81 397 [4] Sun J B, Yang Z W, Geng Y, Lu H L, Wu W R, Ye X D, Zhang W, Shi Yi and Zhao Yi 2013 Chin. Phys. B 22 067701 [5] Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X and Huang R 2014 Chin. Phys. B 23 067701 [6] Yang Y L, Fan X L, Liu C and Ran R X 2014 Physica B 434 7 [7] Cho D Y, Jung H S and Hwang C S 2010 Phys. Rev. B 82 094104 [8] Xiao H Y, Zhang Y and Weber W J 2012 Phys. Rev. B 86 054109 [9] Edmondson F D, Weber W J, Namavar F and Zhang Y 2011 Scr. Mater. 65 675 [10] He G, Chen X and Sun Z 2013 Surf. Sci. Rep. 68 68 [11] Konda R B, White C, Thomas D, Yang Q and Pradhan A K 2013 J. Vac. Sci. Technol. A 31 041505 [12] Konda R B, White C, Smak J, Mundle R, Bahoura M and Pradhan A K 2013 Chem. Phys. Lett. 583 74 [13] Kundu S, Anitha Y, Chakraborty S and Banerji P 2012 J. Vac. Sci. Technol. B 30 051206 [14] Kundu S, Halder N N, Biswas D, Banerji P, Shripathi T and Chakraborty S 2012 J. Appl. Phys. 112 034514 [15] Chagarov E A and Kummel A C 2011 J. Phys. Chem. C 135 244705 [16] Kundu S, Roy S, Banerji P, Chakraborty S and Shripathi T 2011 J. Vac. Sci. Technol. B 29 031203 [17] Sun Q Q, Zhang C, Dong L, Shi Y, Ding S J and Zhang D W 2008 J. Appl. Phys. 103 114102 [18] Shi L B, Li M B and Fei Y 2013 Solid State Sci. 16 21 [19] Jiang H, Gomez-Abal R I, Rinke and Scheffler P M 2010 Phys. Rev. B 81 085119 [20] Shi L B 2012 Mod. Phys. Lett. B 26 1250081 [21] Speight J G 2005 Lange's Handbook Chem. 16th edn (New York: McGraw-Hill) [22] Van de Walle C G, Choi M, Weber J R, Lyons J L and Janotti A 2013 Microelectron. Eng. 109 211 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|