CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Pressure Phase Transitions of PbTe Using the First-Principles Calculations |
LI Yan-Chun1**, LI Gong2, LIN Chuan-Long1, LI Xiao-Dong1, LIU Jing1** |
1Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
|
|
Cite this article: |
LI Yan-Chun, LI Gong, LIN Chuan-Long et al 2015 Chin. Phys. Lett. 32 016101 |
|
|
Abstract High-pressure structural phase transitions in PbTe are investigated by means of the first principles total energy calculations within the generalized gradient approximation (GGA) and local density approximation (LDA) by using the density functional theory. First principle calculation shows that PbTe is stable with the NaCl-type (B1) structure under ambient conditions and transforms to the CsCl-type (B2) structure under high pressure via an intermediate phase. Two candidate structures of the intermediate phase, namely Pnma and Cmcm, are chosen for total energy calculations and discussed. It indicates that the intermediate phase adopts the Pnma structure rather than the Cmcm structure, and lattice parameters of the Pnma phase calculated by using GGA and LDA are in consistent with experimental results.
|
|
Published: 23 December 2014
|
|
PACS: |
61.50.-f
|
(Structure of bulk crystals)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
81.30.Hd
|
(Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)
|
|
|
|
|
[1] Samara G A and Drickanmer H G 1962 J. Chem. Phys. 37 1159 [2] Mariano A N and Chopra K L 1967 Appl. Phys. Lett. 10 282 [3] Fujii Y, Kitamura K, Onodera A and Yamada Y 1984 Solid State Commun. 49 135 [4] Chattopadhyay T, Werner A and Schnering H G 1984 Mater. Res. Soc. Symp. Proc. 22 93 [5] Chattopadhyay T, Vonschnering H G, Grosshans W A and Holzapfel W B 1986 Physica B C 139 356 [6] Maclean J, Hatton P D, Piltz R O, Crain J and Cernik R J 1995 Nucl. Instrum. Methods. Phys. Res. B 97 354 [7] Rousse G, Klotz S, Saitta A M, Rodriguez-Carvajal J, McMahon M I, Couzinet B and Mezouar M 2005 Phys. Rev. B 71 224116 [8] Li Y C, Lin C L, Li H, Li X D and Liu J 2013 High Press. Res. 33 713 [9] Wei S H and Zunger A 1997 Phys. Rev. B 55 13605 [10] Lach-hab M, Papaconstantopoulos D A and Mehl M J 2002 J. Phys. Chem. Sol. 63 833 [11] Rached D, Rabah M, Benkhettou N, Driz M and Soudini B 2003 Physica B 337 394 [12] Ahuja R 2003 Phys. Status Solidi B 235 341 [13] Ovsyannikov S V, Shchennikov V V, Popova S V and Yu. Derevskov A 2003 Phys. Status Solidi B 235 521 [14] Zhang Y, Ke X Z, Chen C F, Yang J and Kent P R C 2009 Phys. Rev. B 80 024304 [15] Xu L Q, Zheng Y P and Zheng J C 2010 Phys. Rev. B 82 195102 [16] Bencherif Y, BouKra A, Zaoui A and Ferhat M 2011 Mater. Chem. Phys. 126 707 [17] Bencherif Y, BouKra A, Zaoui A and Ferhat M 2011 Infrared Phys. Technol. 54 39 [18] Kong F J, Liu Y H, Wang B L, Wang Y Z and Wang L L 2012 Comput. Mater. Sci. 56 18 [19] Bhambhani P and Sharma G 2013 Phase Transit. 86 551 [20] Gupta D C and Bhat I H 2013 J. Mol. Model. 19 3481 [21] Demeray F and Berber S 2013 Phys. Scr. 88 015603 [22] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [23] Perdew J P and Yue W 1986 Phys. Rev. B 33 8800 [24] Hedin L and Lundqvist B I 1971 J. Phys. C 4 2064 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|