Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 097301    DOI: 10.1088/0256-307X/31/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices
ZHANG Lian-Chang1**, SHI Zhi-Wen2, YANG Rong2, HUANG Jian1
1Department of Physics, Kunming University, Kunming 650214
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
ZHANG Lian-Chang, SHI Zhi-Wen, YANG Rong et al  2014 Chin. Phys. Lett. 31 097301
Download: PDF(641KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quasi-monolayer graphene is successfully grown by the plasma enhanced chemical vapor deposition hetero-epitaxial method we reported previously. To measure its electrical properties, the prepared graphene is fabricated into Hall ball shaped devices by the routine micro-fabrication method. However, impurity molecules adsorbed onto the graphene surface will impose considerable doping effects on the one-atom-thick film material. Our experiment demonstrates that pretreatment of the device by heat radiation baking and electrical annealing can dramatically influence the doping state of the graphene and consequently modify the electrical properties. While graphene in the as-fabricated device is highly p-doped, as confirmed by the position of the Dirac point at far more than +60 V, baking treatment at temperatures around 180°C can significantly lower the doping level and reduce the conductivity. The following electrical annealing is much more efficient to desorb the extrinsic molecules, as confirmed by the in situ measurement, and as a result, further modify the doping state and electrical properties of the graphene, causing a considerable drop of the conductivity and a shifting of Dirac point from beyond +60 V to 0 V.
Published: 22 August 2014
PACS:  73.22.Pr (Electronic structure of graphene)  
  73.61.Cw (Elemental semiconductors)  
  73.50.Lw (Thermoelectric effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/097301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Lian-Chang
SHI Zhi-Wen
YANG Rong
HUANG Jian
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 Nature 446 60
[3] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat. Mater. 6 198
[4] Bostwick A, Ohta T, Seyller T, Horn K and Rotenberg E 2007 Nat. Phys. 3 36
[5] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[6] Geim A K 2009 Science 324 1530
[7] Gilje S, Han S, Wang M S, Wang K L and Kaner R B 2007 Nano Lett. 7 3394
[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[9] Firsov A A, Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, R?hr J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Thomas S 2009 Nat. Mater. 8 203
[10] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J and Marchenkov A N 2006 Science 312 1191
[11] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801
[12] Sutter P W, Flege J and Sutter E A 2008 Nat. Mater. 7 406
[13] Marchini S, Gunther S and Wintterlin 2007 Phys. Rev. B 76 075429
[14] Dedkov Y S, Fonin M, Ruediger U and Laubschat C 2008 Phys. Rev. Lett. 100 107602
[15] N'Diaye A T, Bleikamp S, Feibelman P J and Michely T 2006 Phys. Rev. Lett. 97 215501
[16] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[17] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
[18] Yu Q, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S 2008 Appl. Phys. Lett. 93 113103
[19] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R D, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[20] Wehling T O, Novoselov K S, Morozov S V, Vdovin E E, Katsnelson M I, Geim A K and Lichtenstein A I 2008 Nano Lett. 8 173
[21] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[22] Romero H E, Shen N, Joshi P, Gutierrez H R, Tadigadapa S A, Sofo J O and Eklund P C 2008 ACS Nano 2 2037
[23] Alfonso R, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. C 112 17741
[24] Ismach A, Druzgalski C, Penwell S, Zheng M, Javey A, Bokor J and Zhang Y G 2010 Nano Lett. 10 1542
[25] Zhang L C, Shi Z W, Liu D H, Yang R, Shi D X and Zhang G Y 2012 Nano Res. 5 258
[26] Unarunotai S, Murata Y, Chialvo C E, Kim H S, MacLaren S, Mason N, Petrov I and Rogers J A 2009 Appl. Phys. Lett. 95 202101
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 097301
[2] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 097301
[3] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 097301
[4] Gao Wang, Meng-Qiu Long, Dan Zhang. Fano Resonance Effect in CO-Adsorbed Zigzag Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(9): 097301
[5] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 097301
[6] SUI Peng-Fei, ZHAO Yin-Chang, DAI Zhen-Hong, WANG Wei-Tian. Hydrogen Storage Capacity Study of a Li+Graphene Composite System with Different Charge States[J]. Chin. Phys. Lett., 2013, 30(10): 097301
[7] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 097301
[8] YAN Wei-Xian. Graphene Quantum Wells and Superlattices Driven by Periodic Linear Potential[J]. Chin. Phys. Lett., 2013, 30(4): 097301
[9] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 097301
[10] HU Shi-Jie,DU Wei,ZHANG Gui-Ping,GAO Miao,LU Zhong-Yi,WANG Xiao-Qun**. Exact Results for Intrinsic Electronic Transport in Graphene[J]. Chin. Phys. Lett., 2012, 29(5): 097301
[11] MA Peng,JIN Zhi**,GUO Jian-Nan,PAN Hong-Liang,LIU Xin-Yu,YE Tian-Chun,WANG Hong,WANG Guan-Zhong. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors[J]. Chin. Phys. Lett., 2012, 29(5): 097301
[12] Ashkan Horri, Seyedeh Zahra Mirmoeini. Analysis of a Graphane p–n Junction Using the Green Function Method[J]. Chin. Phys. Lett., 2014, 31(08): 097301
Viewed
Full text


Abstract