Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 097102    DOI: 10.1088/0256-307X/31/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes
YU Gui-Li1**, LI Gui-Chen2**, JIA Yong-Lei3, TANG Gang1
1Department of Physics, China University of Mining and Technology, Xuzhou 221116
2School of Mines, and Key Laboratory of Deep Coal Resource Mining (Ministry of Education), China University of Mining and Technology, Xuzhou 221116
3College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000
Cite this article:   
YU Gui-Li, LI Gui-Chen, JIA Yong-Lei et al  2014 Chin. Phys. Lett. 31 097102
Download: PDF(513KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering the exciton effect, the excitation energy and its binding energy of the metallic single-walled carbon nanotubes (SWNTs) are theoretically studied by using the simple tight-binding model, based on which the linear absorption spectra are also calculated. It is found that due to the trigonal warping effect, the excitation energies of the linear optical spectra all are split into two corresponding ones. Additionally, the splitting depends on both the chirality and the transition energy: (1) the splitting is maximal for the zigzag tubes, the splitting decreases with the increasing chiral angle; (2) the higher the transition energy is, the larger the splitting is. It is very interesting to find that the obtained results are in good agreement with the experimental results.
Published: 22 August 2014
PACS:  71.35.-y (Excitons and related phenomena)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  78.67.Ch (Nanotubes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/097102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/097102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Gui-Li
LI Gui-Chen
JIA Yong-Lei
TANG Gang
[1] Saito. R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[2] White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485
[3] Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 1579
[4] Hagen A and Hertel T 2003 Nano Lett. 3 383
[5] Kane C L and Mele E J 2003 Phys. Rev. Lett. 90 207401
[6] Perebeinos V, Tersoff J and Avouris P 2004 Phys. Rev. Lett. 92 257402
[7] Zhao H and Mazumdar S 2004 Phys. Rev. Lett. 93 157402
[8] Perebeinos V, Tersoff J and Avouris P 2005 Nano Lett. 5 2495
[9] Spataru C D, Ismail-Beigi S, Capaz R B and Louie S G 2005 Phys. Rev. Lett. 95 247402
[10] Chang E, Bussi G, Ruini A and Molinari E 2004 Phys. Rev. Lett. 92 196401
[11] Yu G L and Jia Y L 2009 Chin. Phys. Lett. 26 037102
[12] Jia Y L, Yu G L and Dong J M 2009 Nanotechnology 20 155708
[13] Yu G L, Jia Y L and Dong J M 2007 Phys. Rev. B 76 125403
[14] Jiang J, Saito R, Samsonidze G G, Jorio A, Chou S G, Dresselhaus G and Dresselhaus M S 2007 Phys. Rev. B 75 035407
[15] Jia Y L, Yu G L and Dong J M 2008 Eur. Phys. J. B 61 433
[16] Deslippe J, Spataru C, Prendergast D and Louie S G 2007 Nano Lett. 7 1626
[17] Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402
[18] Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 035433
[19] Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 115439
[20] Wang F, Cho D J, Kessler B, Deslippe J, Schuch P J, Louie S G, Zettl A, Heinz T F and Shen Y R 2007 Phys. Rev. Lett. 99 227401
[21] Berciaud S, Cognet L, Poulin P, Weisman R B and Lounis B 2007 Nano Lett. 7 1203
[22] Berciaud S, Voisin C, Yan H, Chandra B, Caldwell R, Shan Y, Brus L E, Hone J and Heinz T F 2010 Phys. Rev. B 81 041414(R)
[23] May P, Telg H, Zhong G F, Robertson J, Thomsen C and Maultzsch J 2010 Phys. Rev. B 82 195412
[24] Orr B J and Ward J F 1971 Mol. Phys. 20 513
[25] Zeng H L, Zhao B T, Zhang F C and Cui X D 2009 Phys. Rev. Lett. 102 136406
[26] Wu Y, Maultzsch J, Knoesel E, Chandra B, Huang M Y, Sfeir M Y, Brus L E, Hone J and Heinz T F 2007 Phys. Rev. Lett. 99 027402
Related articles from Frontiers Journals
[1] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 097102
[2] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 097102
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 097102
[4] Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang, Gang Tang. Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2018, 35(8): 097102
[5] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 097102
[6] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 097102
[7] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 097102
[8] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 097102
[9] CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang** . Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution[J]. Chin. Phys. Lett., 2011, 28(11): 097102
[10] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 097102
[11] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 097102
[12] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 097102
[13] YANG Shao-Peng**, HUANG Da, GE Da-Yong, LIU Bo-Ya, WANG Li-Shun, FU Guang-Sheng . Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures[J]. Chin. Phys. Lett., 2011, 28(8): 097102
[14] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 097102
[15] SHU Shi-Wei, MA Guo-Hong. Temperature-Dependent Defect-Induced New Emission in ZnSe Crystal[J]. Chin. Phys. Lett., 2009, 26(4): 097102
Viewed
Full text


Abstract