Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 097101    DOI: 10.1088/0256-307X/31/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Multiscale Study of Hydrogen Adsorption on Six Designed Covalent Organic Frameworks Based on Porphyrazine, Cyclobutane and Scandium
LI Le-Le1, GAO Teng-Fei1**, ZHANG Ruan-Yu1, ZHANG Hong1,2**
1College of Physical Science and Technology, Sichuan University, Chengdu 610065
2Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610064
Cite this article:   
LI Le-Le, GAO Teng-Fei, ZHANG Ruan-Yu et al  2014 Chin. Phys. Lett. 31 097101
Download: PDF(1178KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The first-principles method of hydrogen adsorption is used to investigate the interaction of H2 with the scandium-porphyrazine (Sc-Pz) and porphyrazine (Pz) clusters. The result shows that the interaction of H2 with Sc-Pz is stronger than with Pz. Then grand canonical Monte Carlo simulations are used to investigate hydrogen adsorption in six designed covalent organic frameworks (COFs), which are designed based on porphyrazine, cyclobutane and scandium. When the pressure is from 0.1 to 100 bar and the temperature is 298 K and 77 K, the hydrogen adsorption capacities of the six COFs are calculated. We further study the importance of Sc and fillers to improve the H2 uptake in the modified COFs by analyzing the isosteric heat of hydrogen adsorption.
Published: 22 August 2014
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.20.Ps (Other inorganic compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/097101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Le-Le
GAO Teng-Fei
ZHANG Ruan-Yu
ZHANG Hong
[1] US DOE Office of Energy Efficiency and Renewable Energy and the Freedom CAR and Fuel Partnership
[2] Züttel A 2003 Mater. Today 6 24
[3] Cumalioglu I et al 2007 J. Press. Vessel Technol. 129 216
[4] Aceves S M et al 1998 J. Energy Resour. Technol. 120 137
[5] Tang F et al 2008 J. Appl. Phys. 104 033534
[6] Huang B et al 2008 Appl. Phys. Lett. 93 063107
[7] Zhao Y F et al 2005 Phys. Rev. Lett. 94 155504
[8] Yildirim T et al 2005 Phys. Rev. Lett. 94 175501
[9] Kim Y et al 2006 Phys. Rev. Lett. 96 016102
[10] Lee H et al 2006 Phys. Rev. Lett. 97 056104
[11] Chen P et al 1999 Science 285 91
[12] Sun Q et al 2006 J. Am. Chem. Soc. 128 9741
[13] Chandrakumar K et al 2008 Nano Lett. 8 13
[14] Ao Z M et al 2010 Phys. Rev. B 81 205406
[15] Yoon M et al 2008 Phys. Rev. Lett. 100 206806
[16] Ataca C et al 2009 Phys. Rev. B 79 041406
[17] Patchkovskii S et al 2005 Natl. Acad. Sci. USA 102 10439
[18] Str?bel R et al 2006 J. Power Sources 159 781
[19] Eletskii A V 2004 Phys. Usp. 47 1119
[20] Yang Z et al 2007 J. Am. Chem. Soc. 129 1673
[21] Rowsell J L C et al 2005 Chem. Int. Ed. 44 4670
[22] Klontzas E et al 2007 J. Phys. Chem. C 111 13635
[23] Mendoza-Cortés J L et al 2012 J. Phys. Chem. A 116 1621
[24] Mendoza-Cortes J et al 2012 J. Phys. Chem. Lett. 3 2671
[25] C?té A P et al 2005 Science 310 1166
[26] Furukawa H et al 2009 J. Am. Chem. Soc. 131 8875
[27] Han S S et al 2007 J. Am. Chem. Soc. 129 8422
[28] Klontzas E et al 2008 Nano Lett. 8 1572
[29] Klontzas E et al2009 J. Phys. Chem. C 113 21253
[30] Cao D P et al 2009 Angew. Chem. Int. Ed. 48 4730
[31] Li A et al 2010 Angew. Chem. Int. Ed. 49 3330
[32] Abel M et al 2011 J. Am. Chem. Soc. 133 1203
[33] Sperl Aet al 2011 J. Am. Chem. Soc. 133 11007
[34] Lü K et al 2011 Appl. Phys. Lett. 99 163104
[35] Klontzas E et al 2010 Nano Lett. 10 452
[36] Rao D W et al 2011 Chem. Commun. 47 7698
[37] Delley B 1990 J. Chem. Phys. 92 508
[38] Delley B 2000 J. Chem. Phys. 113 7756
[39] Inada Y and Orita H 2008 J. Comput. Chem. 29 225
[40] Ao Z M et al 2010 J. Phys. Chem. C 114 14503
[41] Samolia M et al 2013 J. Alloys Compd. 552 457
[42] Rappe A K et al 1992 J. Am. Chem. Soc. 114 10024
[43] Gupta A et al 2003 Mol. Simul. 29 29
[44] Materials Studio version 5.0 (Accelrys Inc, San Diego, CA)
[45] Yang Q 2005 J. Phys. Chem. B 109 11862
[46] Snurr R Q et al 1993 J. Phys. Chem. 97 13742
[47] Tylianakis E et al 2011 Nanoscale 3 856
[48] Sun Y X 2010 J. Phys. Chem. Lett. 1 2753
[49] Li X D et al 2012 Phys. Chem. Chem. Phys. 14 2391
Related articles from Frontiers Journals
[1] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 097101
[2] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 097101
[3] K. Ephraim Babu, N. Murali, K. Vijaya Babu, B. Kishore Babu, V. Veeraiah. Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method[J]. Chin. Phys. Lett., 2015, 32(01): 097101
[4] Roshan Ali, G. Murtaza, Y. Takagiwa, R. Khenata, Haleem Uddin, H. Ullah, S. A. Khan. Optoelectronic Properties, Elastic Moduli and Thermoelectricity of SrAlGa: An Ab Initio Study[J]. Chin. Phys. Lett., 2014, 31(04): 097101
[5] HUANG Duo-Hui, YANG Jun-Sheng, CAO Qi-Long, WAN Ming-Jie, LI Qiang, SUN Liang, WANG Fan-Hou. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(03): 097101
[6] Hayatullah, G. Murtaza, R. Khenata, S. Naeem, M. N. Khalid, S. Mohammad. First Principle Calculations of the Ground and Excited State Properties of RbPbF3[J]. Chin. Phys. Lett., 2013, 30(9): 097101
[7] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 097101
[8] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 097101
[9] YUAN Jin-Hui, HOU Lan-Tian, ZHOU Gui-Yao, WEI Dong-Bin, CHEN Chao, WANG Qing-Yue, HU Ming-Lie, LIU Bo-Wen. Numerical Simulation and Experimental Analysis of Photonic Band Gap in Hollow-Core Photonic Crystal Fibres[J]. Chin. Phys. Lett., 2008, 25(5): 097101
[10] ZHANG Hong, TANG Jin, CHENG Xin-Lu. Structural, Electronic Properties and Chemical Bonding of Borate Li4CaB2O6 under High Pressure: an Ab Initio Investigation[J]. Chin. Phys. Lett., 2008, 25(2): 097101
[11] LI Yu-Xian. Break Cohesion of Metal Contacts due to Voltage Bias[J]. Chin. Phys. Lett., 2006, 23(9): 097101
[12] LI Xiao-Feng, CHEN Xiang-Rong, JI Guang-Fu, MENG Chuan-Min. Ab Initio Calculations of Elastic Constants of Li2O under Pressure[J]. Chin. Phys. Lett., 2006, 23(4): 097101
[13] GUAN Xi-Meng, YU Zhi-Ping. Supercell Approach in Tight-Binding Calculation of Si and Ge Nanowire Bandstructures[J]. Chin. Phys. Lett., 2005, 22(10): 097101
[14] ZHAO Pu-Qin, HU Dong-Sheng, WU Xing-Long. Quantum Confinement of Si Nanosphere with Radius Smaller than 1.2nm[J]. Chin. Phys. Lett., 2005, 22(6): 097101
[15] YI Lin, DUAN Yi-Feng. New Infrared Properties of the Tetragonal CaTiO3[J]. Chin. Phys. Lett., 2005, 22(2): 097101
Viewed
Full text


Abstract