Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090401    DOI: 10.1088/0256-307X/31/9/090401
GENERAL |
The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole
HE Guan-Sheng, LIN Wen-Bin**
School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031
Cite this article:   
HE Guan-Sheng, LIN Wen-Bin 2014 Chin. Phys. Lett. 31 090401
Download: PDF(355KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exact harmonic metric for a moving Reissner–Nordstr?m black hole with an arbitrarily constant speed is presented. As an application, the post-Newtonian dynamics of a non-relativistic particle in this field is calculated.
Published: 22 August 2014
PACS:  04.20.Jb (Exact solutions)  
  04.70.Bw (Classical black holes)  
  95.30.Sf (Relativity and gravitation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Guan-Sheng
LIN Wen-Bin
[1] Look K H, Tsou C L and Kuo H Y 1974 Acta Phys. Sin. 23 225 (in Chinese)
[2] Pyne T and Birkinshaw M 1993 Astrophys. J. 415 459
[3] Kopeikin S M and Sch?fer G 1999 Phys. Rev. D 60 124002
[4] Sereno M 2002 Phys. Lett. A 305 7
[5] Kopeikin S M and Mashhoon B 2002 Phys. Rev. D 65 064025
[6] Miao M Q, Qing S J and An L C 2003 Acta Phys. Sin. 7 049 (in Chinese)
[7] Sereno M 2005 Mon. Not. R. Astron. Soc. 359 L19
[8] Sereno M 2007 Mon. Not. R. Astron. Soc. 380 1023
[9] Kopeikin S M and Makarov V V 2007 Phys. Rev. D 75 062002
[10] Bonvin C 2008 Phys. Rev. D 78 123530
[11] Novati S C, Dall'Ora M et al 2010 Astrophys. J. 717 987
[12] Zschocke S and Klioner S A 2011 Class. Quantum Grav. 28 015009
[13] Wucknitz O and Sperhake U 2004 Phys. Rev. D 69 063001
[14] He G and Lin W 2014 Commun. Theor. Phys. 61 270
[15] He G and Lin W 2014 Int. J. Mod. Phys. D 23 1450031
[16] He G, Jiang C and Lin W 2014 Int. J. Mod. Phys. D (submitted)
[17] Lin W and Jiang C 2014 Phys. Rev. D 89 087502
[18] Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York: Wiley) chap 9 p 220
Related articles from Frontiers Journals
[1] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 090401
[2] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090401
[3] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 090401
[4] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 090401
[5] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 090401
[6] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 090401
[7] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 090401
[8] SHEN Ming, ZHAO Liang. Oscillating Quintom Model with Time Periodic Varying Deceleration Parameter[J]. Chin. Phys. Lett., 2014, 31(1): 090401
[9] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 090401
[10] XUE Bo, WANG Xin. The Darboux Transformation and New Explicit Solutions for the Belov–Chaltikian Lattice[J]. Chin. Phys. Lett., 2012, 29(10): 090401
[11] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 090401
[12] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 090401
[13] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 090401
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 090401
[15] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 090401
Viewed
Full text


Abstract